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SUMMARY

Extracellular growth factors signal to transcription
factors via a limited number of cytoplasmic kinase
cascades. It remains unclear how such cascades
encode ligand identities and concentrations. In this
paper, we use live-cell imaging and statistical
modeling to study FOXO3, a transcription factor
regulating diverse aspects of cellular physiology
that is under combinatorial control. We show that
FOXO3 nuclear-to-cytosolic translocation has two
temporally distinct phases varying in magnitude
with growth factor identity and cell type. These
phases comprise synchronous translocation soon
after ligand addition followed by an extended back-
and-forth shuttling; this shuttling is pulsatile and
does not have a characteristic frequency, unlike a
simple oscillator. Early and late dynamics are differ-
entially regulated by Akt and ERK and have low
mutual information, potentially allowing the two
phases to encode different information. In cancer
cells in which ERK and Akt are dysregulated by onco-
genic mutation, the diversity of states is lower.

INTRODUCTION

Activation of different growth factor receptors induces distinct

phenotypes and cellular responses while engaging a common

set of kinase cascades. The Ras/ERK and PI3K/Akt kinase cas-

cades are particularly important in linking transmembrane recep-

tor activity to mitogenic transcription and cell cycle progression.

It remains unclear how cells transduce information about recep-

tor occupancy to transcription factors using a limited number of

overlapping signal transduction molecules. Some studies sug-

gest that the identity of growth factors is encoded in the dy-
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namics of effector activation (Traverse et al., 1994) or differential

activation of ERK and Akt pathways (Chen et al., 2012). Theoret-

ical studies predict that activation of parallel signaling pathways

might serve to increase the accuracy of signaling downstream of

a receptor input (Cheong et al., 2011).

Signaling kinases and the transcription factors they control

often switch between on and off states repeatedly over the

course of a 12- to 24-hr response (Levine et al., 2013; Purvis

and Lahav, 2013). Such switching is frequently asynchronous

from one cell to the next and bestmonitored using time-lapsemi-

croscopy of fluorescent reporter proteins. Both TP53 and nu-

clear factor (NF)-kB undergo nuclear/cytosolic translocation in

which the duration of the active (nuclear) state determines pro-

moter selectivity and level of transcription. TP53 activation by

DNA damage was initially thought to involve a few strongly

damped oscillations (Lev Bar-Or et al., 2000) but live-cell imaging

reveals extended asynchronous oscillation at a single-cell level

(Batchelor et al., 2011; Lahav et al., 2004). Similar long-duration

pulsing has been observed for NF-kB following exposure of cells

to inflammatory cytokines such as tumor necrosis factor alpha

(Nelson et al., 2004; Tay et al., 2010).

Pulsing genetic circuits have the potential to encode informa-

tion in pulse amplitudes, frequencies, and duration (Levine et al.,

2013). For example, the activity of the extracellular signal regu-

lated kinase ERK, the downstream effector of the mitogen-acti-

vated protein kinase (MAPK or MEK/ERK) cascade, is pulsatile

when cells are exposed to low concentrations of growth factor.

The likelihood that a cell will enter S phase correlates with the

duration of the ERKON state (Albeck et al., 2013). The regulation

and coding potential of pulsatile circuits is best understood in

single-cell organisms. In yeast, both frequency-modulated (FM)

and amplitude-modulated (AM) encoding has been observed

for Msn2, a transcription factor involved in general stress

response, and the identity and intensity of upstream activators

appears to be encoded by FM and AMprocesses working in tan-

dem (Hansen and O’Shea, 2015). Combinatorial gene regulation

is achieved by modulating the relative timing of Msn2 and

Mig1 pulses (Mig1 is a transcriptional repressor that controls
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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metabolic genes) (Lin et al., 2015). Eukaryotic cells have long

been known to exploit combinatorial transcriptional control but

the role of pulsing circuits in such control has only recently

become a topic of interest.

The Forkhead box O3 transcription factor (FOXO3) functions

as an integrative node for several upstream signaling networks.

In mammalian cells, FOXO3 is one of four FoxO family-member

proteins implicated in biological processes that include cycle

arrest, apoptosis, oxidative stress, cell migration, and cell meta-

bolism. Combinations of upstream inputs alter the post-transla-

tional modification state of FOXO3 and these changes control

abundance, subcellular localization, and DNA binding capacity

(Calnan and Brunet, 2008; Eijkelenboom and Burgering, 2013).

Mitogenic growth factors negatively regulate FOXO3 activity

via the MEK/ERK and the PI3K/Akt kinase cascades (Biggs

et al., 1999; Brunet et al., 1999; Yang et al., 2008), whereas

oxidative stress exerts positive regulation via the JNK and

MST1 kinases (Essers et al., 2004; Lehtinen et al., 2006).

Phosphorylation of FOXO3 by Akt at T32, S253, and S315 pro-

motes interaction with 14-3-3 proteins, causing nuclear-to-cyto-

solic translocation and relieving repression of mitogenic genes

(Brunet et al., 2002). ERK phosphorylation on S294, S344, and

S425 also promotes FOXO3 nuclear-to-cytosolic translocation

and degradation via MDM2-dependent ubiquitin-mediated pro-

teolysis (Yang et al., 2008). Other regulators of FOXO3 activity

include energy stress via the AMPK pathway (Greer et al.,

2007), genotoxic stress via CDK proteins (Huang et al., 2006),

and cytokines via the IkB kinase (Hu et al., 2004). Measuring

and analyzing such complex signal encoding is fundamental to

understanding combinatorial control by FoxO family transcrip-

tion factors andmay be of diagnostic value in cell types with mis-

regulated FoxO proteins (van der Horst and Burgering, 2007).

In this article, we study how the identities and concentrations

of growth factors are encoded in the dynamics of FOXO3 activ-

ity. We find that FOXO3 exhibits complex patterns of nuclear-to-

cytosolic translocation in ligand-activated cells on multiple time

scales. Across all cells in a population, synchronous cytosolic

translocation is observed within 20 min of ligand addition, fol-

lowed by a return to the nucleus and then an extended period

of asynchronous (and non-oscillatory) shuffling between cyto-

solic and nuclear compartments. The relative magnitude of syn-

chronous translocation and pulsing varies with the identity of the

activating growth factor and the properties of the cell line with

synchronous translocation regulated primarily by Akt and puls-

ing by Akt plus ERK. Our data provide insight into combinatorial

control of FOXO3 by immediate-early signal transduction cas-

cades pathways and demonstrate how a single transcription fac-

tor can assume a wide range of possible states in response to

different upstream inputs.

RESULTS

Design and Characterization of the F3aN400-Venus
Reporter
FoxO localization has been studied in live mammalian cells using

fluorescent protein fusions (Gross and Rotwein, 2015; Senape-

dis et al., 2011), but the impact of differences in ligand identity

and concentration has not been investigated in depth. We there-

fore constructed a FOXO3 translocation reporter responsive to
both ERK and Akt that is not expected to perturb normal tran-

scription (Figure 1A). A Venus fluorescent protein was fused to

a 400-residue domain of human FOXO3 containing all three

known sites of Akt phosphorylation (T32, S253, and S315; Fig-

ure 1A, green text) and two of three known ERK phosphorylation

sites (S294 and S344; blue text) but lacking a transactivation

domain. The F3aN400-Venus reporter also carried an H212R

loss-of-function mutation in the DNA binding domain to prevent

dominant-negative effects on endogenous FOXO3 (Tran et al.,

2002); such effects were observed with a full-length FOXO3

construct. To determine if F3aN400-Venus faithfully captures

FOXO3 dynamics, parallel cultures of parental and F3aN400-

Venus expressing 184A1 cells were treated with epidermal

growth factor (EGF) at concentrations from near physiological

to saturating (0.4–100 ng/mL) in combination with the allosteric

Akt1/2/3 inhibitor MK-2206 at varying doses; this protocol

was observed to elicit a wide range of FOXO3 states from

fully nuclear localized to fully cytosolic (Figure 1B). F3aN400-

Venus was imaged directly and parental cells stained with

anti-FOXO3 antibody. When cells were segmented and

the median nuclear-cytoplasmic translocation value (median of

log10[Cnorm/Nnorm]) compared for the reporter and endogenous

protein, a Pearson’s correlation coefficient of 0.91 was obtained,

representing a high degree of concordance. The dynamic range

estimated for the nuclear-cytoplasmic ratio was similar for

endogenous FOXO3 (�0.8 to 0; Figure 1B), and F3aN400-Venus

(�0.6 to 0.2); as expected, dynamic range varied depending on

how background intensity was computed but values were insen-

sitive to the image segmentation algorithm used (see STAR

Methods for complete definitions; Figures S1A–S1D). We

conclude that the localization of the F3aN400-Venus report

and endogenous FOXO3 are similar across a wide range of

conditions.

Variability in cytoplasmic-to-nuclear ratio across cells in a

culture (as quantified by interquartile range; IQR), serves as a

surrogate measurement for shuttling between the nucleus and

cytoplasm in the absence of a reporter (this makes the ergodic

assumption that difference across many cells at a single point

in time are reflective of differences over time in a single cell; Fig-

ure S1E). Across a range of conditions, the median and IQR of

the cytoplasmic/nuclear ratio for endogenous FOXO3 and the

F3aN400-Venus reporter were similar, suggesting that the fluo-

rescent sensor recapitulates most but not all of the dynamics

of endogenous FOXO3 (Figure S1F). The largest discrepancy

was observed at low levels of cytoplasmic translocation when

the endogenous protein is expected to be more completely re-

tained in the nucleus than the reporter because only the former

is active in DNA binding. In common with many live-cell studies

of transcription factor shuttling, we were unable to distinguish

the behavior of FOXO3 that is chromatin bound and FOXO3

that is free in the nucleus. Nonetheless, F3aN400-Venus appears

to be a faithful reporter of overall FOXO3 state.

To investigate regulation of F3aN400-Venus by Akt and ERK,

serum-starved 184A1 cells were treated with one of six growth

factors at 100 ng/mL and the levels of phosphorylated pAktS473

and pERKT202/Y204 measured by immunoblotting (phosphoryla-

tion at these sites, henceforth pERK and pAkt, is a surrogate

for Akt and ERK kinase activity; Figure S1G). Insulin growth fac-

tor (IGF)1 caused strong and persistent Akt activation, whereas
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EGF, betacellulin (BTC), epiregulin (EPR), hepatocyte growth

factor (HGF), and heregulin (HRG) caused transient activation.

The opposite pattern was observed for ERK, with EGF eliciting

the strongest ERK activity and IGF1 the least. These differences

corresponded well to phosphorylation of F3aN400-Venus, as

measured by pS294 and pS253 ratios 15–480 min after growth

factor addition (Figures 1C and S1G). Use of selective kinase in-

hibitors (MK-2206 for Akt1/2/3 and CI-1040 for MEK1/2)

confirmed that F3aN400-Venus phosphorylation was ERK-

dependent on S294 and Akt-dependent on S253 (Figure S1G;

right-most immunoblot panel), consistent with the well-estab-

lished biology of FOXO3 (Brunet et al., 2001; Yang et al., 2008).

We conclude that the F3aN400-Venus reporter recapitulates

previously described patterns of FOXO3 nuclear translocation

and phosphorylation.

To study F3aN400-Venus translocation dynamics in response

to growth factors, F3aN400-Venus localization was monitored

by live-cell microscopy over a 24-hr period. Following exposure

to EGF (Figure 1D, red arrowhead), synchronous cytosolic trans-

location of the reporter was observed in all cells, peaking at

t = 15–20 min, followed by a return to the nucleus by t = 60–

100 min. Starting at �80 min after EGF addition (Figure 1D,

blue arrowhead), shuttling between the cytosol and nucleus

was observed every 50–100 min. Shuttling was not observed in

all cells but, when it did occur, continued for up to 24 hr and

was asynchronous from one cell to the next. Immunofluores-

cence imaging of endogenous FOXO3 in >1,000 fixed cells at

each time point confirmed translocation from the nucleus to

the cytosol in >90% of cells at 10–30 min after EGF addition
(A) Schematic of the F3aN400-Venus reporter and its upstream activators.

mVenus Fluorescent Protein was fused to residues 1–400 of native human

FOXO3, which contained Akt-dependent T32, S253, and S315 (green) and

ERK-dependent S294 and S344 (blue) phosphorylation sites but lacked the

transactivation domain. An H212R mutation inactivated DNA binding and

prevented dominant-negative effects on endogenous FOXO3.

(B) Comparison of endogenous FOXO3 and F3aN400-Venus localization.

Parental and reporter-expressing cells 184A1 cells were pre-treated with

Akt1/2/3 inhibitor (MK2206; at eight doses from 0 to 1 mM) for 1 hr prior to EGF

stimulation (at six doses from 0.4 to 100 ng/mL). Parental cells were immu-

nostained with anti-FOXO3 antibody and reporter-expressing cells imaged

directly. Data were collected at 15 (red datapoints), 45 (yellow), 90 (green), and

120 (blue) min. Each datapoint represents the median of translocation,

calculated from log10 of the normalized cytoplasmic/nuclear intensity ratio

(Cnorm/Nnorm). Right panels show example images for both types of cells

treated with DMSO or MK2206 (at 1 mM) prior to EGF stimulation (100 ng/mL).

(C) Relationship between the pERKT202/Y204-to-pAktS473 phosphorylation ratio,

a surrogate for relative ERK and Akt activity and the relative phosphorylation of

the reporter (the pF3aN400S294-Venus to pF3aN400S253-Venus ratio) in cells

exposed to 100 ng/mL growth factor at four time points from 15 to 480 min.

Error bars represent propagated errors from two biological replicates (see

STARMethods for complete details). Also refer to Figure S1G and Table S1 for

complete dataset.

(D) Single-cell trajectories of F3aN400-Venus translocation in 184A1 cells

imaged every 5 min following exposure to 100 ng/mL EGF. Red arrowhead

marks the time of ligand addition (t = 0). Ten randomly selected of �100 total

trajectories are highlighted in color. Blue arrowhead at t = 80 min denotes end

of synchronous translocation.

(E) Density plots (>1000 cells per time point) showing the localization

of endogenous FOXO3 based on immunostaining at different times after

100 ng/mL EGF addition. Percentages of cells with log10(C/N) above the cutoff

(dotted line) are shown above.

http://http//dx.doi:10.1016/j.cels.2018.05.004#mmc4
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average of >100 trajectories per ligand and other

panels show single-cell trajectories; ten randomly

selected trajectories are highlighted in color.
(Figure 1E), followed by a progressive increase in the IQR of

log10(C/N) after 30 min, consistent with live-cell studies. When

184A1 cells were exposed to one of six growth factors at con-

centrations ranging from roughly physiological to saturating,

we found that IGF1 elicited sustained nuclear-to-cytosolic trans-

location while the EGF-like growth factors BTC and EPR elicited

transient translocation followed by varying degrees of pulsing

(Figure 2; see also Movie S1). Thus, FOXO3 translocation ex-

hibits qualitatively distinct translocation dynamics depending

on growth factor.

Synchronous FOXO3 Translocation Dynamics Vary with
Growth Factor Dose and Identity
To quantify differences in F3aN400 trajectories following growth

factor stimulation of 184A1 cells, >100 trajectories were

collected per condition and then separated into early synchro-
C

nous and late pulsing phases. For the

early synchronous phase, functional prin-

cipal component analysis (fPCA) was

used to decompose the signal prior to

and immediately after ligand addition

(t = �70 to +80 min) into a weighted set

of orthogonal harmonic functions. Three

harmonic functions explained >95% of

variance across growth factors and

doses, representing excellent perfor-

mance for a PCA model (Figures 3A and

S2A). The harmonic corresponding to

the first principal component (fPC1)

comprised the pre-treatment baseline

signal, while fPC2 corresponded to a

rapid increase in cytoplasmic-nuclear

ratio to a high and constant value by

t = 20 min; fPC3 was transient, rising

rapidly to a maximum at t = 15 min and

then falling below baseline levels by

60 min (Figure 3A). In the landscape of

fPC2 versus fPC3, BTC, IGF1, and EPR

represented extrema: BTC scored rela-

tively high in both fPC2 and fPC3, IGF1

scored high in fPC2, and EPR scored

low in both fPC2 and fPC3 (Figure 3B).

These differences were statistically signif-

icant, but other ligands exhibited interme-

diate behavior and could not be as cleanly

distinguished from each other (Figure 3C).

For all but IGF1, fPC2 and fPC3 scores

varied smoothly with dose (Figure 3D)

suggesting that differences in loadings
reflect qualitative differences among ligands and not simply

varying degrees of receptor activation. Scores for fPC1were var-

iable and not significantly different among growth factors,

whereas fPC2 and fPC3 scores discriminated among ligands

with high confidence (Figure S2B; p < 10�10 based on Wilcoxon

rank-sum test as compared with unstimulated cells). We

conclude that different growth factors induce significantly

different FOXO3 translocation dynamics in the initial synchro-

nous phase of response to growth factor.

FOXO3 Translocation Is Pulsatile but Not Oscillatory
When harmonics comprising fPC1-fPC5 were added together in

proportion to their scores, the contribution of long-wavelength

changes to F3aN400-Venus dynamics could be visualized (Fig-

ure 3E). In the case of EGF we found that this ‘‘trend’’ response

comprised both synchronous translocation into the cytoplasm
ell Systems 6, 664–678, June 27, 2018 667
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and quick return to the nucleus by t = 80 min (as described

above), as well as gradual return to the cytosol between

t = 200 and 300 min in a majority of cells (Figure 3E, left panel).

Subtracting this trend response from the original trajectories re-

vealed the pulsatile signal (Figure 3E, right panel). When fPCA

analysis was performed on trajectories between t = 80 and

1,580min, the PCA scores were significantly different from those

of unstimulated cells only in the case of IGF1. Thus, only IGF1 is

associated with a significant ‘‘trend’’ response at later times,

consistent with manual inspection showing sustained cytosolic

FOXO3 localization. For other ligands, fPCA scores for the late

response were insignificantly different from each other and

from untreated cells. Reconstructed late-phase trend lines ob-

tained by adding these fPCA harmonics together (Figure S3A)

were nonetheless useful in correcting for drift and background

fluorescence on a trajectory-by-trajectory basis.

Oscillation is often observed in dynamic systems having

strong feedback regulation (Elowitz and Leibler, 2000; Lahav

et al., 2004). A key characteristic of oscillatory systems is stability

in the frequency domain (Halford et al., 1973), a property that can

be evaluated by computing spectral density, the distribution of

power versus frequency. A purely sinusoidal oscillator, when

sampled in discrete time, gives rise to a narrow spectral density

distribution whose width varies with sampling error and signal-

to-noise ratio (the blue line in Figure 3F represents an oscillator

with a frequency of �0.2 mHz sampled every 5 min convolved

by measurement noise). However, detrended trajectories for

F3aN400-Venus exhibited an inverse relationship between po-

wer and frequency in the range of 0.05–2 mHz (Figure 3F); this

was true when the data were analyzed either in aggregate or

ligand-by-ligand. Such a relationship is a characteristic of 1/f

or ‘‘pink’’ noise (where f is frequency), observed in many non-

equilibrium physical systems (Hausdorff and Peng, 1996).

When the power spectrum was computed for trajectories with

the greatest degree of pulsing (see below), we observed a statis-

tically significant deviation from pure 1/f behavior at �0.2 mHz,

which corresponds to a wavelength of 80 ± 30 min. This ac-

counts for the apparent periodicity of some F3aN400-Venus

trajectories. We conclude that the pulsatile component of

F3aN400-Venus trajectories is not oscillatory in the conventional

sense, although it does haveweak periodicity. Irregular pulsing is

a feature of both stochastic and chaotic dynamical systems and

either or both could be involved in F3aN400-Venus dynamics

(Timmer et al., 2000).
Figure 3. Early Synchronous Response of F3aN400-Venus Translocati

(A) Schematic of fPCA performed on F3aN400-Venus trajectories between t =�70

fPC3 harmonics in the middle; and score plots on the right. fPC1 corresponds to a

and fPC3, a post-treatment transient harmonic. fPC1–3 explain 58%, 35% ,and

(B) Plot of fPC2 versus fPC3 scores for six growth factors at 100 ng/mL. Large

trajectories on a per-growth factor basis.

(C) Pairwise comparison of fPCA scores by growth factor; significant differences

(D) Median values of fPCA scores from different growth factors at various conc

different scores from untreated controls are depicted as solid points while those

(E) Heat maps of 40 selected F3aN400 trajectories (with high pulse scores) in 1

generated by combining the first five harmonics from fPCA analysis on a per-tr

trajectories revealing pulsing. Red and blue arrowheads denote t = 0 and t = 80

(F) Spectral density analysis of detrended F3aN400 trajectories ranked by puls

spectrum for a simple sinusoidwith sampling noise similar to that of experimental d

comparison.
FOXO3 Pulsing Varies with Ligand and Carries Distinct
Information
Because F3aN400-Venus trajectories were not oscillatory, we

quantified shuttling using a ‘‘pulse score’’ schematized in Fig-

ure 4A (and described in full in STAR Methods). This score

comprised a nonlinear combination of (1) the number of pulses,

(2) the pulse amplitude, (3) the signal-to-noise ratio in the images,

(4) the average peak duration, and (5) the average peak-to-peak

distance. We quantified the fraction of pulsing cells in different

conditions using a threshold of �0.6 in pulse score, which opti-

mally discriminated trajectories in cells exposed to BTC and

IGF1 (the least and the most pulsatile trajectories as judged by

the human eye; Figure 4A). We found that the fraction of pulsing

cells rather than pulse amplitude or duration varied the most

between conditions, justifying our use of discretization (Figures

4B and S3B). Approximately 10% of serum-starved 184A1 cells

exhibited pulsing in the absence of growth factor (Figure 4B;

‘‘0 ng/mL’’); addition of IGF1 suppressed baseline pulsing in a

dose-dependent manner by inducing persistent cytosolic trans-

location. In contrast, the other five growth factors increased the

fraction of pulsing cells above the baseline. Exposure of cells to

BTC, HGF, or HRG resulted in a progressive increase in the frac-

tion of pulsing cells over a �40-fold concentration range (Fig-

ure 4B; blue, green, and yellow lines), whereas exposure to

EGF or EPR resulted in a sudden increase in pulsing over a nar-

row �2-fold range in ligand concentration (cyan and pink).

Similar data were obtained in F3aN400-Venus expressing

MCF10A cells, a second normal mammary epithelial cell line,

except that these cells were less sensitive to BTC and more

sensitive to EGF than 184A1 cells (Figure S4B). We conclude

that differences in identities and concentrations of an extracel-

lular ligand result in consistent differences in FOXO3 transloca-

tion dynamics, as expected for dynamical encoding.

To determine whether the trend and pulsatile components of

FOXO3 translocation dynamics carry different information (Han-

sen andO’Shea, 2015), we calculated themutual information be-

tween fPCA scores for the synchronous response between

t = �70 to 80 min and the discretized pulse scores between 80

and 1,580 min. Variation in early fPCA scores typically explained

<20% of the variation in the late pulsatile response and was

ligand dependent (Figures 4C and S3C). In this context, this rep-

resents a low level of mutual information since trajectories from

IGF1-treated cells, in which pulsing is low, exhibited over 60%

mutual information between early and late phases (Figure S3C).
on Varies with Growth Factor Identity

and 80 min. Three example trajectories are shown on the left; fPC1, fPC2, and

pre-treatment baseline harmonic, fPC2, a post-treatment sustained harmonic

3% of observed variance across all ligands (respectively).

oval regions represent 95% confidence intervals for scores computed for all

are highlighted in gray (p value <10�10; Wilcoxon rank-sum test).

entrations, fitted with linear models (solid lines). Datapoints with significantly

with p value >10�10 are depicted as unfilled points. See also Figure S2B.

84A1 cells treated with 100 ng/mL EGF. Left panel shows ‘‘trend’’ response

ajectory basis. Right panel subtracts the computed trend from experimental

min (see Figure 1D for comparison).

e score (gray lines; see Figure 4 for method used to calculate pulsing). The

ata is shown in light blue line and simulated pink noise in pink line are shown for
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Figure 4. Late Pulsing of F3aN400 Translocation also Exhibits Ligand-Dependent Dynamics

(A) Schematic of method used to compute pulse scores. Left: F3aN400-Venus trajectories for three ligands (each at 100 ng/mL) detrending between t = 80 and

1,580 min by fPCA on a per-trajectory basis (dotted lines represents the computed trends). Upper right: Computing pulse score using a peak detection algorithm

and pulse score calculated from a nonlinear combination of the (1) number of edges, (2) pulse amplitude, (3) signal-to-noise ratio (not shown), (4) peak duration,

and (5) peak distance. See details in STAR Methods. Lower right: Discretization of pulse scores; dotted line depicts a threshold at �0.6.

(B) Fraction of cells with pulsing F3aN400-Venus reporter based on ligand dose and identity, as scored by the algorithm described in (A). Solid lines show fitted

trends based on Hill’s equation. Error bars represent bootstrap confidence intervals computed from single-cell pulse scores at each ligand dosing (bootstrapping

was performed using the MATLAB function, bootci with a = 0.32).

(C) Comparison of fPC2 versus pulse score for trajectories collected from cells exposed to IGF1, BTC, and EPR. Shading represents ligand concentration, ranging

from lowest (0 ng/mL, black dots) to highest (100 ng/mL, colored dots). Light gray data points represent all other conditions. Dotted lines depict the pulse score

threshold for discretization.
These data suggest that early and late FOXO3 translocation dy-

namics are largely independent of each other and therefore have

the potential to encode different information (except in the case

of IGF1 in which little pulsing is observed).

Regulation of FOXO3 Dynamics by Akt and ERK
Information is transduced from transmembrane receptors to

FOXO3 via cytosolic kinase cascades, among which those

involving Akt and ERK are best understood. Previous work

from our group has shown that growth factors differentially acti-

vate ERK and Akt signaling in mammary cells (Niepel et al., 2014)

and blotting for FOXO3 phosphorylation on S253 and S294
670 Cell Systems 6, 664–678, June 27, 2018
confirmed that differences in kinase activity are transmitted to

the F3aN400-Venus sensor (Figure 1C). To investigate the func-

tions of post-translational modification, we engineered serine/

threonine to alanine mutations into the F3aN400-Venus sensor

at known phosphorylation sites (Figure S4A). Translocation

dynamics were quantified by fPCA in the early phases (from

�70 to 80 min) and pulse score in the late phase (from 80 to

1,580 min). In 184A1 cells, a triple point mutation in Akt sites

(T32A/S253A/S315A) totally inhibited cytosolic translocation un-

der all conditions, reducing fPC2 and fPC3 scores to near zero

and also eliminating pulsing (Figure 5A). In contrast, mutation

of ERK-specific sites (S294A/S344A) had a relatively small effect
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on either fPCA scores or pulsing, and differences among ligands

were retained (Figure 5A). Akt inhibition with MK-2206

phenocopied T32A/S253A/S315A mutation by eliminating all

cytosolic translocation and pulsing (Figure 5B). Similar data

were obtained in F3aN400-Venus expressing MCF10A cells

(Figure S4B).

To further investigate the role of MEK/ERK signaling in pulsing,

184A1 and MCF10a cells were exposed to PD0325901 and EGF

in combination over a range of concentrations and pulse score

was measured (Figure 5C). In both cell types, low-dose MEK in-

hibitor increased pulse scores above the level observed with

EGF alone (to a maximum of 0.8), but as drug concentration

increased above 2 nM, pulse score then fell monotonically to a

minimum of �0.3. Because CI-1040 and PD0325901 are among

the most selective kinase inhibitors known (they are non-ATP-

competitive), off-target effects are unlikely. We conclude that

MEK and ERK are likely to regulate F3aN400-Venus pulsing indi-

rectly or via unmapped modification sites.

To examine the interplay between pulsing and early synchro-

nous translocation, cells were exposed to growth factors in com-

bination with inhibitors of Akt or MEK inhibitors over a range of

concentrations. Dynamics were then analyzed on a landscape

of early fPC2 score versus pulse score. In 184A1 cells treated

with IGF1, fPC2 score varied with ligand dose, pulse score was

low, and addition of Akt inhibitor resulted in a dose-dependent

shift along the fPC2 axis, showing that IGF1 primarily regulates

FOXO3 via Akt (Figure 5D, orange and yellow data points). Expo-

sure of cells to different levels of EGF changed both fPC2 and

pulse scores (Figure S5A; this was true of other ligands as well;

Figure S5B). Complete inhibition of the Akt pathway reduced

fPC2 and pulse score to zero (Figure S5A; black square dot).

The effects of MEK inhibition were more complex: in 184A1 cells

exposed to 20 ng/mL EGF, MEK inhibitor increased pulsing

2-fold at intermediate drug concentrations and then reduced it

at higher concentrations. At lower EGF concentrations, progres-

sively higher doses of MEK inhibitor resulted in a monotonic

decrease in pulsing. Taken together, these data suggest that

(1) complete inhibition of Akt blocks cytosolic translocation of

F3aN400-Venus under all conditions, (2) partial inhibition of Akt

suppresses both the trend and pulsing responses, (3) pulsing

is also regulated by MEK/ERK signaling, although not via known

sites of FOXO3 modification, and (4) at high ligand levels, frac-

tional inhibition of MEK/ERK can increase pulsing, implying

that signaling is saturated.

FOXO3 Integrates ERK and Akt Dynamics
To study the relationship between ERK and FOXO3 dynamics in

single cells, we constructed a dual reporter in which F3aN400-
Figure 5. ERK/Akt Combinatorial Regulation on FOXO3 Dynamical Enc

(A and B) Effects on F3aN400-Venus dynamics in 184A1 cells with (A) mutation

response in an fPC2-vs-fPC3 landscape for multiple ligands; arrows depict chang

trajectories for reporters without (gray) or with (blue) phospho-site mutants or dru

bars represent standard errors from bootstrapping). See Figure S4B for MCF10A

(C) Averaged pulse scores (for >100 trajectories per condition) in F3aN400-Venu

PD0325901 at 0–100 nM for 1 hr and subsequently exposed to EGF at 0–100 ng

(D) Plot of fPC2 versus pulse score for 184A1 or MCF10a cells pre-treated with th

inhibitor MK-2206 at four doses (6.25, 25, 100, 500 nM) and then with EGF at 4 n

circles) or 100 ng/mL (orange circles), respectively. Directional arrows and the th
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mCherry was linked to EKAREV, a FRET-based reporter of

ERK kinase activity (Albeck et al., 2013; Aoki et al., 2013), via a

type 2A self-cleaving peptide (Figure 6A). Trajectories were

normalized using trend lines derived from fPCA or spline-fitting

and scaled individually by the max-min range for that reporter

(to correct for differences in reporter-intrinsic intensity and dy-

namic range). In MCF10A cells, we found that ERK activity and

nuclear-to-cytosolic translocation of F3aN400-mCherry cells

tracked each other before and after stimulation with BTC (typical

pairs of F3aN400 and EKAREV activity trajectories are shown in

the upper left panel of Figure 6B; more examples are shown in

Figure S6). Across a set of �30 F3aN400 and EKAREV trajec-

tories, a median Pearson’s correlation coefficient of R �0.83

was obtained for the two trajectories using a sliding 90-min win-

dow (Figure 6B, upper right panel). When cells were stimulated

with BTC for 4 hr and then treated with the Akt inhibitor (1mM

of MK2206), F3aN400-mCherry stopped pulsing, but EKAREV

dynamics were not appreciably altered, causing the two trajec-

tories to decorrelate (median R = �0.03; Figure 6B, middle

panels). When BTC-stimulated cells were treated with MEK in-

hibitor (1mM of CI1040) at t = 4 hr, pulsing by both EKAREV

and F3aN400-mCherry was largely eliminated and trajectories

became decorrelated (median R = 0.17; Figure 6B, bottom

panels). We conclude that the EKAREV and F3aN400-mCherry

undergo synchronous pulsing in a manner that requires both

Akt and ERK activity. When growth factors were compared,

EKAREV and F3aN400-mCherry were most highly correlated

when pulse scores were high (e.g., with BTC, EPR, and EGF as

ligands; p < 0.01 using Wilcoxon rank-sum test against unstimu-

lated cells) and least correlated when pulse scores were low

(e.g., with IGF1; Figures 6C and 6D). Thus, FOXO3 pulsing ap-

pears to originate from the dynamics of ERK activity while also

requiring activation of the Akt pathway.

Exploring the Connectivity of ERK, Akt, and FOXO3 in
Breast Cancer Cell Lines
To determine how FOXO3 translocation varies across cell lines,

we selected, from a panel of widely studied breast cancer cells,

seven lines that include HER2AMP, hormone-receptor positive,

and triple negative subtypes (the ICBP43 set [Li et al., 2013]);

184A1 and MCF10A cells were included as examples of normal

mammary epithelial controls. Mutations in mitogenic signaling

networks are common in breast cancer, and multiple cell lines

in our collection carry oncogenic mutations in HRAS, KRAS,

BRAF, and PIK3CA. To study FOXO3 localization in these cells

we used fixed-cell immunofluorescence at seven time points

15 to 240 min following exposure of cells to one of seven growth

factors at 100 ng/mL. The average level of FOXO3 activation was
oding

s in phosphorylation sites or (B) MEK and AKT inhibitors. Top panels: early

e from wild-type to mutant reporter (or with and without drug). Middle panels:

gs in BTC-treated cells. Lower panels: pulse scores for multiple ligands (error

data.

s expressing 184A1 and MCF10A cell lines pre-treated with the MEK inhibitor

/mL.

e MEK inhibitor PD0325901 at five doses (0.39, 1.56, 6.25, 25, 100 nM) or Akt

g/mL (cyan diamond) or 20 ng/mL (blue diamond) or IGF1 at 20 ng/mL (yellow

ickness of the outlines denote increasing drug concentration.
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Figure 6. In-Phase Pulsing of ERK Activity and FOXO3 Translocation

(A) Schematic of a dual reporter for ERK (EKAREV) and FOXO3 (F3aN400) linked via a P2A self-cleaving peptide. EKAREV activity was quantified from the FRET/

CFP signal ratio and F3aN400-mCherry by C/N ratio.

(B) Detrended trajectories (scaled by max-min range to facilitate comparison) for EKAREV (black) and F3aN400-mCherry (red) in serum-starved MCF10A cells

expressing the dual reporter construct. Cells were exposed at t = 0 hr (denoted by green arrowhead) to 100 ng/mL BTC followed at t = 4 hr (blue arrowhead) by

DMSO, Akt inhibitor (1 mMMK-2206), or MEK inhibitor (1 mMCI-1040). Correlation coefficients (middle panels) were calculated using a �90-min sliding window,

andmedian scores are shown as box blots (right panels) for all trajectories prior to (yellow) and after drug exposure (green). Boxplots depict the 25th, 50th (in red)

and 75th percentiles of the correlation coefficients.

(C) Correlation coefficients for EKAREV activity and F3aN400 translocation pulsing in cells exposed to different growth factors at 100 ng/mL. Boxplots depict the

first, second (in red), and third quartiles of the correlation coefficient. The whiskers span fromQ1� 1.53 IQR to Q3 + 1.53 IQRwhere Q1 is the first quartile, Q3 is

the third quartile, and IQR is the interquartile range (this span represents 99.3% of all values).

(D) Fraction of pulsing cells based on the EKAREV reporter following stimulation with different growth factors and doses.
captured by the median value of the FOXO3 C/N ratio; the me-

dian IQR of the C/N ratio served as a proxy for pulsing compat-

ible with fixed-cell imaging (as described above; Figure 7A).

Across all ligands and time points, normal mammary 184A1
and MCF10A exhibited the widest range of signaling states,

whereas breast cancer cells exhibited narrower ranges (Fig-

ure 7B). BT20 and T47D cell lines, which carry activating muta-

tions in the catalytic p85 subunit of PI3K (PIK3CA), were confined
Cell Systems 6, 664–678, June 27, 2018 673



A B

Akt  ERK ERK Akt
ERK  FoxO3 Akt  FoxO3

V
ar

ia
bi

lit
y 

in
 F

ox
O

3 
C

/N
 ra

tio
 (I

Q
R

)

 Normalized median of FoxO3 C/N ratio   

HRAS G12D BRAF G464V
KRAS G13D

 PIK3CA P539R/H1047R PIK3CA  E545K  PIK3CA H1047R

0 0.5 1 0 0.5 1 0 0.5 1

0

0.1

0.2

0.3 184A1 MCF10A1 SKBR3

0

0.1

0.2

0.3 HCC1806 HS578T MDA231

0

0.1

0.2

0.3 BT20 MCF7 T47D

EGF
IGF1
FGF1
HRG
HGF
EPR
BTC
No Drug
Akti

EGF [100ng/ml]

MCF10A Cells

FoxO3 C/N ratio

EGF + MEK Inhibitor

0
15
30
60
90

120
180
240

0
15
30
60
90

120
180
240

0.28

0.09

>0.99

ERK Akt

FoxO3

Topology

Probability of edge

T47D
MCF7
BT20

MDA231
HS578T

HCC1806
SKBR3

MCF10A
184A1

0 0.5 1

ERK Akt

FoxO3

ERK Akt

FoxO3

>0.99

0.09

>0.99>0.99

FoxO3 C/N ratio

EGF [100ng/ml]

FoxO3 C/N ratio

EGF + MEK Inhibitor

FoxO3 C/N ratio

184A1
MCF10A

SKBR3
HCC1806

HS578T
MDA231

BT20
MCF7

T47D
-50 0 50

E

F G

ERK Akt 

HCC1806 Cells

Ti
m

e 
(m

in
)

Ti
m

e 
(m

in
)

Accessible states by ligand

ERK-Akt Crosstalk

One mean and IQR value per condition

Inferred Network Topology

0 min

15 min

240 minFr
ac

tio
n 

of
 c

el
ls

C
/N

 IQ
R

C/N Median value

50 mm

Schematic of Analysis 

Median and IQR FoxO3 C/N ratio

C DChanges in pAktS473 with MEK inhibition

B
TC

E
G

F

E
P

R

FG
F1

H
G

F

H
R

G

IG
F1 N
S

184A1

MCF10A

SKBR3

HCC1806

HS578T

MDA231

BT20

MCF7

T47D
-60

-40

-20

0

20

40

60
184A1

MCF10A

SKBR3

HCC1806

HS578T

MDA231

BT20

MCF7

T47D
-60

-40

-20

0

20

40

60

B
TC

E
G

F

E
P

R

FG
F1

H
G

F

H
R

G

IG
F1 N
S

IF for FOXO3

Changes in pERKT202/Y204 with Akt inhibition

A
re

a 
U

nd
er

 th
e 

C
ur

ve
 (A

U
C

)

A
re

a 
U

nd
er

 th
e 

C
ur

ve
 (A

U
C

)

Figure 7. Diversity of Interactions among ERK, Akt, and FOXO3 in Breast Cancer Cell Lines

(A) Schematic of FOXO3 analysis in cancer cell lines by immunofluorescence imaging. Median C/N ratio captures overall activity and interquartile range (IQR) the

extent of cell-to-cell variability, which arises in part from pulsing. Values were obtained from >1,000 fixed cells per condition; see STAR Methods for details on

normalization methods.

(B) Relationship between median values and IQR of FOXO3 C/N ratios across breast cancer cell lines. Cells were serum-starved and pre-treated with DMSO or

10 mM MK2206 for 1 hr and then exposed to growth factors at 100 ng/mL followed by immunostaining with anti-pERKT202/Y204, anti-pAktS473, or anti-FOXO3

antibodies. Each datapoint corresponds to one post-treatment time point.

(legend continued on next page)
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to the fully active state (high C/N ratio) even in the absence of

ligand, whereas BRAFG464V/KRASG13D MDA231 cells exhibited

intermediate median C/N ratios and low IQR, suggesting

reduced pulsing (Figure 7B). We infer that activating mutations

in either the Akt or ERKpathways reduce the accessible dynamic

range over which FOXO3 can respond to growth factors.

Based on current understanding of immediate-early signaling,

ERK could either regulate FOXO3 directly by phosphorylating it

on S294, S344, or S425 (Yang et al., 2008) or it could act indi-

rectly via negative cross-talk on Akt (Moelling et al., 2002; Yu

et al., 2002). To begin to distinguish between these possibilities,

we measured cross-regulation between ERK and Akt in different

cell lines exposed to one of seven growth factors. The effect of

MEK/ERK on AKT was assessed by measuring pAktS473 levels

in the presence and absence of MEK inhibition and the effect

of AKT on MEK/ERK by pERKT202/pY204 levels was measured in

the presence and absence of Akt inhibition (Figures 7C–7E).

This experiment revealed a wide range of possible interactions

between Akt and ERK depending on ligand and cell type. For

example, inhibition of Akt with MK2206 following IGF1 exposure

significantly increased pERKT202/pY204 levels in 184A1 cells but

had little effect in MCF10A cells (Figure 7D).

We then used dynamic Bayesian network analysis (Friedman

et al., 2000; Hill et al., 2012) to infer the connectivity of ERK,

Akt, and FOXO3 as assessed by either the median or IQR

of the C/N ratio under 32 different conditions (4 inhibitor condi-

tions 3 8 ligand conditions) for each cell line (Figure S7A). We

found that the probability of edges corresponding to Akt /

FOXO3, ERK / FOXO3, and Akt 4 ERK varied to a significant

degree with cell line and ligand (Figure 7F). Probability values

also varied with the learning method, as expected for probabi-

listic analysis of noisy data, but overall agreement was quite

good: BGe and BDe scoring algorithms exhibited 94% and

81% agreement with dynamic Bayesian network (DBN) results

(Figures S7B–S7D), suggesting that inferred edge probabilities

are likely to be reliable in aggregate (Heckerman et al., 1995).

In all cell lines, we found strong evidence of an Akt / FOXO3

interaction, and in HCC1806, HS578T, BT20, and T47D,

the probability of an ERK / FOXO3 interaction was high.

Akt 4 ERK interactions were strongest in MCF7 cells (Fig-

ure 7F). Comparison of FOXO3 translocation in MCF10a and

HCC1806 cells exemplified this difference. ERK/ FOXO3 inter-

action was inferred to be substantially stronger in HCC1806 than

MCF10 cells and MEK inhibition had a substantially greater ef-

fect on the distribution of FOXO3 C/N values in HCC1806 than

MCF10A cells (Figure 7G). We conclude that networks regulating

FOXO3 differ in topology from one cell type to the next and that

ERK can probably control pulsing via both Akt-dependent and

Akt-independent mechanisms.
(C and D) Heatmap showing effect of MEK inhibition (CI1040, 10 mM) on the area

area under the curve of pERKT202/Y204 levels 0–240 min for each cell line/ligand c

(E) Cross-talk between the ERK and Akt pathways. Changes in pERKT202/Y204 le

caused by MEK inhibitor (red data points) for each ligand and cell line combinati

(F) Dynamic Bayesian network (DBN) modeling of data described in (B) and (E) to

The resulted edge probabilities are shown in the bottom panel with error bars ind

with noise added to the data. See also Figure S7 for similar analyses using BGe

(G) Comparison of FOXO3 translocation dynamics betweenHCC1806 andMCF10

the right show corresponding probabilities from DBN analysis for each edge inte
DISCUSSION

In this article, we analyze the temporal regulation of FOXO3, a

mammalian transcription factor controlled in a combinatorial

manner by multiple signal transduction pathways. We focused

on nuclear-cytosolic translocation induced by growth factors

and its regulation by the ERK and Akt kinase cascades. Relocal-

ization plays an important role in the regulation of transcription

factors and has recently been shown by live-cell imaging to

involve pulses of active and inactive states. In the case of

mammalian transcription factors, such as NF-kB and TP53

(Batchelor et al., 2008; Tay et al., 2010) and yeast Msn2 and

Crz1 (Cai et al., 2008; Hao and O’Shea, 2011), modulation of

the timing and duration of nuclear-cytosolic translocation carries

information about the strength and identity of the initiating stim-

ulus (Hansen and O’Shea, 2016; Tay et al., 2010). We build on

these concepts by demonstrating that FOXO3 dynamics

comprise early and late phases that respond independently to

differences in the relative activities of ERK and Akt kinases,

which are determined in turn by growth factor identity and

concentration (all data are available for reanalysis in an NIH

LINCS format at http://lincs.hms.harvard.edu/sampattavanich-

cellsyst-2018/). The early FOXO3 response to ligand is synchro-

nous across all cells and relatively short-lived; the late phase is

pulsatile and can last for 24 hr or more. The synchronous

response is strongest for ligands such as IGF1 and weakest for

EPR and BTC; the opposite is true of the pulsatile response.

These features of FOXO3 appear to be reflective of the interplay

between ERK and Akt signaling and provide FOXO3 with signif-

icant information-encoding capacity. Although we have not yet

linked differences in FOXO3 dynamics to differential transcrip-

tional activity, we speculate that the diversity of dynamical re-

sponses is relevant to the diverse biological activities of FoxO

class of transcription factors.

Ligand Identity Is Transmitted by Relative Akt and ERK
Activities and Encoded in FOXO3 Dynamics
Across a wide range of ligand types and concentrations, FOXO3

translocation dynamics have two distinct temporal phases.

Within 15 to 20 min of growth factor addition, FOXO3 moves

from the nucleus to the cytoplasm in near-synchrony across all

ligand-activated cells in the population. FOXO3 then shuttles

back and forth between the two compartments for up to

24 hr. Early synchronous translocation of FOXO3 appears to

be regulated primarily by the intensity of Akt activity. Subsequent

pulsing is asynchronous and occurs in phase with pulses of

ERK activity; when Akt is active, pulses of ERK activity corre-

spond to periods of FOXO3 cytosolic localization. For many

ligands, mutual information between early and late dynamics is
under the curve of pAKTS473 levels or of AKT inhibition (MK2206, 10 mM) on the

ombination.

vels caused by Akt inhibitor (black data points) or changes in pAKTS473 levels

on.

infer the probability of Akt/ FOXO3, ERK / FOXO3, and Akt4 ERK edges.

icating the standard deviation of predictions across multiple independent runs

and BDe scoring methods.

A cells exposed to 100 ng/mL EGFwith andwithoutMEK inhibitor. Diagrams on

raction as calculated in (F).
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low (<20%), suggesting that the two temporal phases can carry

distinct information.

Different growth factors induce Akt and ERK to different de-

grees (Niepel et al., 2014), and this correlates well with the de-

gree of phosphorylation of FOXO3 on Akt and ERK-dependent

sites and the extent to which a ligand provokes the two phases

of FOXO3 dynamics. For example, IGF1 signals strongly through

Akt and primarily induces a harmonic in the principal component

decomposition of FOXO3 trajectories that remains high for an

extended period of time, whereas BTC signaling is biased to-

ward ERK rather than Akt and primarily induces a harmonic

that peaks at t = 15 min and then falls back to baseline. Because

individual target genes can respond preferentially to constant or

oscillatory patterns of transcription factor activity (Purvis et al.,

2012; Tay et al., 2010), we speculate that FOXO3 dynamics are

readout at the level of target genes involved in cell death, cell cy-

cle progression, reactive oxygen species detoxification, etc.

(Jensen et al., 2011; Purvis et al., 2012; Tay et al., 2010). How-

ever, our data do not address how this might be achieved; in

well-characterized systems such as TP53, kinetically related

genes do not fall neatly into clusters of similar function (Porter

et al., 2016).

Pulsatile regulation of transcription factors is often described

as oscillatory, but in the case of FOXO3, spectral density analysis

does not reveal a dominant frequency, a key characteristic of a

conventional oscillator. Thus FOXO3 does not exhibit either

AM or FM encoding (Levine et al., 2013). Instead, we observe a

1/f spectrum (where f is frequency), a common characteristic

of multiscale dynamical systems. In F3aN400-Venus trajec-

tories, the 1/f power spectrum (also known as pink noise) is

convolved by a relatively weak but statistically significant peri-

odic signal with a wavelength of 80 ± 30 min (�0.2 mHz), consid-

erably faster than the oscillations of TP53 (which have a

periodicity of 3–5 hr) (Purvis et al., 2012), but similar to NF-kB

(periodicity �1.5 hr) (Kellogg and Tay, 2015). The origins of 1/f

and periodic components of FOXO3 trajectories remain

unknown.

Combinatorial Control over FOXO3 Activity
The relationship between FOXO3 pulsing and Akt or ERK activity

is complex and non-monotonic. For example, in two cell lines we

studied in detail, the highest pulse scores for EGF are observed

when ligand concentrations are sub-saturating or ERK is partially

inhibited. This effect may be indirect, as the Akt and ERK kinase

cascades are known to have multiple mechanisms of cross-

regulation, involving both ERK-dependent inhibition of Akt (Yu

et al., 2002) and PI3K/Akt-dependent inhibition or stimulation

of ERK (Moelling et al., 2002). Our data suggest that ERK regula-

tion of FOXO3 kinetics is at least partly indirect, perhaps via

modulation of Akt activity. However, the strength of such

cross-talk (asmeasured by the effect of Akt inhibition on ERK ac-

tivity and vice-versa) varies with cell line and with ligand. More-

over, whereas our experiments artificially vary FOXO3 dynamics

over a range of states using ligands and ERK and Akt inhibitors in

combination, we speculate that this is achieved physiologically

by the combined activities of multiple activating and inhibitory

signal transduction cascades.

In tumor cells carrying mutations in ERK and Akt signaling pro-

teins, such as the p85 subunit of PI3K (PIK3CA), HRAS, PTEN
676 Cell Systems 6, 664–678, June 27, 2018
phosphatase, etc., the range of dynamical states that can be ac-

cessed for FOXO3 in response to growth factors is lower (often

much lower) than in normal epithelial cells. In some cell types

(BT20 for example), FOXO3 is chronically localized in the cytosol

and growth factors have little or no effect. In HCC1806 or SKBR3

cells, multiple ligands can promote cytosolic translocation, but

the range of dynamical states is less than in normal epithelial

cells. This suggests that FOXO3 trajectories encode less infor-

mation in cancer than normal cells. However, more complete un-

derstanding of the effects of oncogenic mutations on FOXO3 will

require dynamical data from both transformed and non-trans-

formed cell types rather than the fixed-cell imaging used to

compare tumor cells in the current study.

Conclusion
In the past few years, it has been shown that multiple transcrip-

tion factors and signal transduction kinases alternate between

active and inactive states on time scales of minutes to hours. It

has been suggested that such systems can encode information

via variation in amplitude (AM encoding) or frequency (FM en-

coding). FOXO3 dynamics do not conform to either of these pos-

sibilities but instead involve independently regulated early and

late phases. Late-phase pulsing by FOXO3 is non-oscillatory

and synchronous with ERK pulsing, which has been proposed

to originate from the stochastic release of autocrine factors

among adjacent cells (Sparta et al., 2015). Alternatively,

FOXO3might be regulated by an excitable intracellular feedback

circuit subject to stochastic fluctuation (although a pure oscil-

lator degraded by Poisson noise is not expected to have a 1/f

power spectrum) or a chaotic feedback oscillator (Novak and

Tyson, 2008). Regardless, multi-part dynamical trajectories

represent a potential mechanism for combinatorial control over

transcription. It will be interesting to determine whether other

transcription factors, including other members of the FoxO fam-

ily, also have multi-part dynamical trajectories controlled by

ligand identity.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue Culture Cell Lines
The different cell lines were obtained from the following sources: 184A1 (ATCC� CRL-8798) from ATCC; MCF10A (ATCC� CRL-

10317) from ATCC; HCC1806(ATCC� CRL-2335) from ATCC; BT-20 (ATCC� HTB-19) from ATCC; MDA-MB-231 (ATCC� HTB-

26) from ATCC; T47D (ATCC� HTB-133) from ATCC; Hs578T (ATCC� HTB-126) from ATCC; MCF7 (ATCC� HTB-22) from

ATCC; SKBR3 (ATCC� HTB-30) from ATCC. All cells were quarantined before they were used for experiments and were tested

for mycoplasma and other microbial contamination. All cell lines were authenticated by profiling highly-polymorphic short tandem

repeat loci (STRs) by the Dana Farber Cancer Institute (DFCI) Molecular Diagnostics Laboratory. The sex of the cell lines are as

follows; Female:184A1, MCF10A, HCC1806, BT-20, MDA-MB-231, T47D, Hs578T, MCF7, SKBR3. MCF-10A and 184A1 cells

were cultured at 37�Cwith 5%CO2 in DMEM/F12 (Invitrogen) supplemented with 5% horse serum, 20 ng/mL EGF, 10 mg/mL insulin,

0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 50 U/mL penicillin and 50 mg/mL streptomycin; all other cells were grown

according to ATCC recommendations.

METHOD DETAILS

Tissue Culture
For experiments involving growth factor stimulation cells were plated and cultured in full growth media for 24 hours. At time of exper-

iment, cells were washed twice with PBS and then placed in serum-free medium (DMEM/F12 with Penicillin/Streptomycin but no

phenol red) for 5 hr, followed by washing and replenishing in fresh serum-free medium for 1hr. Cells were then exposed to

growth-factors in serum-free medium, resulting in a �5% volume increase. In experiments with kinase inhibitors, drugs were added

1 hr prior to growth factors, unless indicated otherwise.

Construction of Plasmids and Reporter Cell Line Establishment
The complete coding sequence of human FoxO3 was inserted into pBabe-puro upstream of mVenus and an H212R mutation intro-

duced into the DNA binding domain (Tran et al., 2002). When transduced into MCF10A cells with retroviruses, this construct trans-

located into the cytosol upon insulin treatment. However, expression levels were uneven among clonal cell populations and cells

grew poorly. Thus, a region of FoxO3-H212R corresponding to amino acid residues 1-400 was inserted into pMSCV-puro, upstream

of a Venus sequence, to generate pMSCV-puro-F3aN400-Venus. When introduced stably into MCF-10A cells by retroviral transduc-

tion, this construct displayed translocation from the nucleus to the cytosol upon insulin treatment, and translocation to the nucleus in

response to inhibitors of AKT or PI3K.

To clone fluorescently tagged FoxO3 constructs containing mutations at known sites of phosphorylation a pUC57 plasmid was

designed and synthesized by GENEWIZ (Figure S8A), containing an ERK-silent F3aN400-FLAG-mCerulean (with S294A/S344A mu-

tations in FoxO3 sequences), an AKT-silent F3aN400-HA-Venus (with T32A/S253A/S315A in FoxO3) sequences and an NLS-Myc-

mCherry, separated by self-cleaving P2A sites. Silent mutations were introduced to create unique restriction sites for generating the

following constructs: ERK-silent F3aN400-HA-Venus-P2A-NLS-Myc-mCherry (NaeI) (Figure S8B) or AKT-silent F3aN400-HA-

Venus-P2A-NLS-Myc-mCherry (XhoI). To create a FoxO3 construct without AKT- or ERK-specific mutations (F3aN400-HA-

Venus-P2A-NLS-Myc-mCherry) from this synthetic construct, a PCR fragment from wildtype-FoxO3 was introduced into the NotI/

NaeI sites of ERK-silent F3aN400-HA-Venus-P2A-NLS-Myc-mCherry. All FoxO3 constructs were subsequently subcloned into

the EcoRI/SalI restrictions sites of pPB-CAG.EBNXN (A. Bradley, Sanger Institute) containing a puromycin selection cassette.

To create the dual reporter construct pPB-CAG-EKAREV-P2A-F3aN400-HA-mCherry containing the ERK reporter EKAREV

(Albeck et al., 2013; Komatsu et al., 2011) and a F3aN400-mCherry separated by a self-cleaving P2A site, PCR fragments were gener-

ated from pPB-CAG-EKAREV using the EKAREV primer pairs, pPB-CAG-F3aN400-HA-Venus-P2A-NLS-Myc-mCherry using the

F3aN400 primer pairs and pcDNA3-H2B-mCherry, Addgene plasmid 20972 (NamandBenezra, 2009) using themCherry primer pairs

(Key Resources Table) were cloned into the EcoRI/SalI restriction sites of pPB-CAG-EKAREV using Gibson Assembly (New England

BioLabs).

To create stable cell lines and minimize recombination between highly similar fluorescent protein sequences, piggyBac trans-

poson-mediated gene transfer was used; the pPB-CAG expression vectors were co-transfected with a pCMV-hyPBase transposase

vector (A. Bradley, Sanger Institute). All FoxO3 sensors were co-expressed with the nuclear reporter NLS-mCherry to facilitate image

segmentation, either by double delivery using retroviral infection or by joining the nuclear reporter with the FoxO3 sensor using the

P2A ribosomal skipping sequence.

Analysis of Total Cellular Lysates
Cells grown and starved as described above were lysed using RIPA-Buffer (Sigma) supplemented with Complete Protease Inhibitor

Cocktail (Roche) with sonication on ice. Extracts were analyzed using SDS-Page followed by transfer to PVDFmembranes (Millipore),

blocking with Odyssey Blocking Buffer (LI-COR) for 1h, washing with PBS/0.1% Tween and incubation with primary antibody over-

night at 4�C in Odyssey Blocking Buffer. Blots were developed and scanned following the Odyssey protocol (LI-COR).
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Fixed and Live-Cell Microscopy
For live time-lapse microscopy, cells expressing reporter constructs were plated in 96-well plates at � 6 x 105 cells/cm2 and then

imaged using a 10x objective on a Nikon Eclipse inverted fluorescence microscope fitted with an environmental chamber maintained

at 37�C with 5% CO2. Images were collected at 5-10 minutes intervals for a period of 24 hr using the Hamamatsu ORCA-ER cooled

CCD camera and Spectra-X light engine (Lumencor). Filter sets used in this study included the polychroic mirror (251050, Chroma),

CFP (Ex:440/20, Em:475/20), FRET (Ex:440/20, Em:540/21), YFP (Ex:508/24, Em:540/21) and RFP (Ex:575/22, Em:632/60).

For fixed cell assays for immunostaining, cells were fixed for 10 minutes at room temperature with 2% paraformaldehyde in PBS

and then permeabilized with 100% methanol for 10 minutes. After blocking with Odyssey blocking buffer (LI-COR) for 1 hour, cells

were incubated with primary antibodies overnight at 4�C. Samples were washed, stained with secondary antibodies at room tem-

perature for 1 hour and counter-stained with DAPI and a whole cell stain (Thermo Scientific) at room temperature for 1 hour. After

washing, plates were imaged at 10X using an Operetta high-content imaging system (Perkin Elmer).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of FoxO3 Translocation Activity
For fixed immunostained cells, image segmentation was performed using cellProfiler (Kamentsky et al., 2011) and extracted features

analyzed usingMATLAB scripts. For live imaging, cell tracking and segmentation were performed usingMATLAB scripts. Image seg-

mentation was performed on the nuclear image of each field using NLS-mCherry signal. Cell tracking was performed by cross-cor-

relation between adjacent frames and validated manually. To calculate FoxO3 translocation dynamics, we first identified nuclear

compartment of each cell using either DAPI staining of fixed cells or the NLS-mCherry channel for live microscopy. We then deter-

mined the cell boundary either by thresholding to detect the outer cell boundary or by expanding 4 pixels from the nuclear boundary

(Figure S1A). We quantified FoxO3 translocation by calculating the ratio between themean pixel intensity in the cytosolic and nuclear

compartments (C/N). For fixed cell studies, FoxO3 intensity was determined by immunostaining cell with anti-FoxO3 antibody. For

live microscopy, FoxO3 intensity was derived from direct imaging of the F3aN400 reporter. We often report FoxO3 C/N ratios as log

base 10 transformed values (log10(C/N)) so that trajectories with equal FoxO3 intensity inside the nuclear and the cytosolic compart-

ments are centered at 0. To minimize variability in background fluorescence arising from variation in light source or camera drift over

time, we first subtracted the mean pixel values in each compartment by the mean pixel value of the background, followed by calcu-

lating the log base 10 ratios; this gives rise to the normalized ratio log10(Cnorm/Nnorm) (Figure S1A). For EKAREV, the background

signal was first subtracted, and the FRET/CFP ratio calculated at the single pixel level. ERK activity was then calculated from the

mean value from the cytosolic compartment of the normalized FRET/CFP values.

Scaling of Western Blots; Error Propagation; Total Least Squares
Protein concentrations were estimated usingWestern blotting; eachmeasurement (e.g. pAktS473 intensity from blotting) was normal-

ized to itsmaximum value across an entire experiment. To account for systematic variation within each gel, the intensity of actin stain-

ing was used as a calibration standard (Schilling et al., 2005). The following computational analysis was performed to obtain amerged

data set. For Immunoblotting, measurement noise is usually log-normal distributed (Kreutz et al., 2007) hence data was log-trans-

formed. Observations frommultiple experiments were merged by assigning each data-point yobs(cij,tik) for condition cij and timepoint

tik a common scaling factor bsi for each observable and experiment, i.e. byijk = bsi$yobsðcij; tikÞ, or
yijk = si + log2ðyobsðcij; tikÞÞ (Equation 1)

in the log space. Different gels performed within a single experiment were assumed to be comparable and therefore assigned the

same scaling factors. ForN experiments, there areN�1 degrees of freedom in terms of scaling; therefore, s1 was set to 1 without loss

of generality. To merge data-sets from multiple experiments, the objective function

RSS1 =
X
i;j;k

�
ymðcj; tkÞ � yijk

�2
(Equation 2)

was minimized, yielding the maximum likelihood estimates�
s�i ; y

�ðcj; tkÞ
�
= argmin

i

RSS1 (Equation 3)

for scaling factors s�i and merged values y*(cj,tk). For numerical optimization of RSS1, the MATLAB function lsqnonlin was applied

using the trust-region method (Coleman and Li, 1996). Using the Jacobian matrix J, we then calculated the uncertainty of esti-

mates from

s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag

�
ðJyJÞ�1

�r
: (Equation 4)

Ratios (or differences in log-space) of the merged values

rjlk = y�ðcj; tkÞ � y�ðcl; tkÞ (Equation 5)
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were calculated as final readout of the analysis. Uncertainties were propagated using the following equation:

sðrjlkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðy�ðcj; tkÞÞ2 + sðy�ðcl; tkÞÞ2

q
: (Equation 6)

Equation 6 was used to determine propagated errors for the pERK/pAKT ratios in Figure 1C. For any indexed sets

M= fjlk1; jlk2;.; jlkMg and Q= fopq1;opq2;.; opqMg with samples that share a linear relationship, we assume a linear model

a*x + b for the relationship of (rM, rQ), and can apply total least squares to determine estimates and uncertainties of both dependent

and independent variables simultaneously. For this purpose, the following objective function

RSS2 =
X
MQ

1

sðrjlkÞ
�
rjlk � ropq � b

a

�
+

1

sðropqÞ ðropq � a$ropq � bÞ (Equation 7)

was numerically optimized as discussed in Equation 3. Using this formula, the constraint of relative data having an unknown scaling

factor with respect to concentration level does not influence the slope a, but only offseting b.

Different experiments are scaled in reference with each other, resulting in merged y* and corresponding uncertainties. Ratios of

normalized parameters were then calculated. In our study (Figure 1C), we applied this approaches to the ratios of pERK/pAKT

and pS294/pS253, and a linear model was fitted to their relationship using total least squares.

Functional Principal Component Analysis (fPCA)
To analyze the underlying trends of the reporter translocation trajectories, we implemented functional principal component analysis

(fPCA). Similar to classical principal component analysis, this technique generates an empirical set of orthogonal basis functions ji(t)

that comply with 	
ji;jj



=

Z
jiðtÞjjðtÞdt = 0 (Equation 8)

and these basis functions also yield maximal variance for any i s j. We first applied this technique for the early synchronous

response, with t ˛ [�70, 80] min. Equidistantly spaced cubic b-splines (De Boor, 2001) were used to convert the input signals to

continuous time-courses. We smoothed the signals using 1.5 data-points per basis function to avoid overfitting. Artifacts at the

edges, normally arising at the beginning and at the end of each trajectory, were not an issue here because of the high number of

trajectories for basis calculation (total of over 5000 trajectories). Using the implementation described by Ramsay (Ramsay et al.,

2009; Ramsay and Silverman, 2005), we identified three orthonormal basis functions (harmonics) that together explain over 95%

of the observed variance. To make biologial senses of the observed basis functions, we rotated the three basis functions using

the following transformation:

R=

0@ 1 0 0
0 cosq3 sinq3
0 �sinq3 cosq3

1A0@ cosq2 0 �sinq2
0 1 0

sinq2 0 cosq2

1A0@ cosq1 sinq1 0
�sinq1 cosq1 0

0 0 1

1A (Equation 9)

using Euler angles q1=�25+, q2=5
+ and q3=�5+ . The first harmonic fPC1 corresponds to a steady-state value prior to ligand addi-

tion and is not significantly different between growth factor stimuli (Figure 3C). The second harmonic fPC2 corresponds to a sustained

translocation starting at t=0min and the third harmonic fPC3 corresponds to a transient function that falls below baseline at t=60min.

For t > 80 min, all harmonics converge to the Fourier basis, implying that trajectories from late-response are truely asynchronous.

Pulse Score and Fraction of Pulsing Cells
Trajectory artifacts such as spikes resulting from cell division or loss of cell tracking were first removed by interpolation. Missing

values were added by interpolation for fPCA and dropped in subsequent analysis. For F3aN400-Venus translocation trajectories,

the first three fPCA harmonics were employed to detrend the signals (as shown in Figure 4A) and an additive model of slow trend

and fast pulsing assumed. The detrended signal was smoothed using N/3 bsplines for N data points. For EKAREV traces, an aver-

aged trend determined from average sliding window was first applied to detrend the signal. Peaks were then detected on smoothed

and detrended trajectories. Due to overfitting, pulsatile traces often contain small peaks. We dropped small peaks with edge height

less than 0.005. The final detrended, interpolated, and peak adjusted signals were used for detecting edges that connect from peak

to peak of each trajectory. As a result, we can define edges into two finite sets: Tstart = ftsð1Þ;.; tsðNedgeÞg and Tend = fteð1Þ;.;teðNedgeÞg,
depicting the starting and ending points of all edges, respectively. The index set I3f1;.;Nedgegwith NI elements contains indices

of edges that are directly connected to a neighboring edge. Superscripts + and – denote ascending and descending edges andNpeak

the total number of peaks. The deviation of the smoothed signal y and data yD is quantified with RSS =
PN

k =1ðyðtkÞ � yDðtkÞÞ2.
For calculating the pulse score, the following features fi were extracted (See also Figure 4A)

1. Number of pulse edges: f1 = Nedgez2Npeak

2. Pulse amplitude: f2 = max ~yðtÞ� min ~yðtÞ
3. Signal to noise ratio: f3 =

f2

1=ðN� 1Þ ffiffiffiffiffiffiffiffiffiffi
RSS

p
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4. Peak duration: f4 =
1

NI

X
i˛I

��tsðiÞ � teði + 1Þ
��

5. Peak distance: f5 =
1

Nedge � 1

XNedge�1

i =1

���t ±sði +1Þ � t ±sðiÞ
��� + 1

Nedge � 1

XNedge�1

i =1

���t ±eði + 1Þ � t ±eðiÞ
���

Whenever no peaks were detected, peak duration and peak distance were set to 300 min. A reference value ri and a set of weights

wi was defined for all features fi. Positive values for wi represent features for which a larger value corresponds to more pulsing, i.e.

number of edges, amplitude, and signal to noise ratio. Respectively, a negative number for wi depicts a feature for which a larger

value indicates less pulsing, namely peak duration and peak distance. Using the features fi, the reference values ri, and the weights

wi, the pulsatory score was calculated for each trajectory based on the following formula:

p=
Y
i

�
fi
ri

�wi

: (Equation 10)

Reference values and weights were adjusted by sorting trajectories by their pulse score p to achieve visual ordering of pulsing.

Resulted reference values and weights are r = (90, 0.04, 40, 300, 300) and w = (2, 1, 1.5, -1.5, -1.5), for all five characteristics of pulse

score, respectively. A threshold pulse score of 0.6 was used for assigning each trajectory into the pulsing or non-pulsing groups. The

choice of 0.6 was supported by visual inspection that this threshold can best separate BTC-stimulated cells from IGF1-stimulated

condition (Figure 4A). Finally, the fraction of pulsing cells was calculated for each condition based on

fp=
Npulsing

Nall

: (Equation 11)

Power Spectrum Analysis
Time-course measurements from single cells were ordered according to their pulsatory score and subsequently grouped based on

their percentile ranking into 4 bins: <10th, 25th-50th, 50th-75th and >90th . For each trace y (tn) the corresponding periodogram

jYðfÞj2 =Dt

N
$

�����XN
n= 1

yðtnÞe�ifn

�����
2

(Equation 12)

was calculated. To minimize leakage effects due to the finite time-window of observation, signals were tapered using a triangular

window. The power spectrum was finally calculated by averaging periodograms from all traces in each bin. Spectra of simulated

time-courses were also included as references, namely 1) pink noise (Bak et al., 1987) and 2) white noise added to a sinusoidal wave

ysinðtnÞ= s1 sinð2ptn=rfÞ+ s2e (Equation 13)

using an independent and identically distributed random variable e˛Nð0; 1Þ, weighting factors si to adjust the scales, and the refer-

ence frequency rf of 80 min.

Mutual Information
To assess the predictability of pulsing classification from the early PC scores, we applied the concept of mutual information (MI).

Specifically, the MIxnyn implementation of the MILCA algorithm (Kraskov et al., 2004) was used to determine the MI score between

the discretized pulse score (0 = non-pulsing; 1 = pulsing) and the corresponding early fPC scores for each trajectory. MI scores were

determined for individual fPC score as well as for combined fPC scores. As reference, we used the entropy of pulsing classification

H(fp) = MI(fp,fp).

Fixed-Cell Analysis of ERK-AKT-FoxO3 Connectivity
Data of phosphorylated ERK-T202/Y204 or AKT-S473 and the nuclear translocation of FoxO were collected in 9 cell lines (MCF10A,

184A1, HS578T, BT20, SKBR3, MDA231, MCF7, HCC1806, and T47D) at 8 time points. Several perturbation conditions were

measured consisting of stimulation with one of 7 growth factors and no treatment control (8 ligand options), with or without AKT

and/or MEK inhibitors (4 inhibitor conditions). This results in a total of 32 perturbation conditions.

Because the activity of endogenous FoxO3was obtained from different cell populations at different time points, it was not possible

to learn a dynamical model directly usingmeasurement at single-cell resolution.We therefore chose quantities representing the char-

acteristics of the population distribution of each measured signal. For the measurement of pERK and pAKT, we chose to use their

medians (ERKm, AKTm) as measures of the net level of signal activation at the cell population level. These values were normalized

by their maximal values on a per-cell line basis. For FoxO3, we found that perturbations affect both the position (median) and the

spreading (inter-quartile range, IQR) of the C/N ratio. We therefore used positions along the curve of FoxO3 C/N translocation ratios

in the median vs. IQR landscapes (Figure 7B) as the representative value of FoxO3 activity. In what follows, we will denote this value

by FoxO3f.With this approachwe expect to show a dependence of FoxO3 on ERK andAKT both in terms of its level and its variability

(see Figure S9A).
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Quantifying ERK, AKT and FoxO3 Response to Inhibitors
To quantify the effect of MEK inhibition on AKT phosphorylation, we calculated the difference in the median values for AKT, AKTm, at

each time point (separately for each combination of cell line and growth factor), in two different inhibitor conditions: with the MEK

inhibitor pre-treatment and without any inhibitor pre-treatment (DMSO). This resulted in a vector of difference values across the

8 time points, which we deduced using the corresponding area under the curve. This gives a lumped measure of the overall effect

of MEK inhibition on AKT phosphorylation for each cell line/growth factor pair (Figure 7C). To further summarize this effect across all

ligand conditions, we took the mean of the AUC values across all ligands to obtain a single representative value for each cell line (red

crosses in Figure 7E). Quantification on the effect of AKT inhibition on ERKphosphorylation (ERKm) was also done in the samemanner

(Figure 7D and black crosses in Figure 7E). To quantify the effect on FoxO3 by either MEK or AKT inhibition, we used the same AUC-

based method but on the position along the parabola in the median vs. IQR landscape (FoxO3f), as described above.

Approach to Bayesian Model Comparison
Weused the above fixed-cell data from various cell lines to performBayesianmodel discrimination in comparing hypotheses that can

best describe the contribution of ERK and AKT activity in FoxO3 translocation. We applied three different dynamic Bayesian network

scoring schemes to compare thesemodel hypotheses: two based on a conditionally Gaussian probabilistic model and the third using

a discretized approach. From the Bayesian scores obtained from each model we derive probabilities for the support for each indi-

vidual causal edge between ERK, AKT and FoxO3.

When using theGaussian-based scoring schemes, we directly used the values described above. For the scoring scheme relying on

discrete data, we first performed data discretization as follows. We took data points for each of the 3 variables and independently

applied Otsu’s discretization technique (Otsu, 1979), which calculates for the optimum threshold such that the intra-class variance

is minimized between two groups to which the values are discretized.

Comparing Model Topologies
Wewere interested in evaluating causal dependencies representing the relationships between ERK, AKT and FoxO3.We considered

four relationships of interest:

1. AKT controlling FoxO3 independent of ERK,

2. ERK controlling FoxO3 independent of AKT,

3. ERK controlling AKT,

4. AKT controlling ERK.

These mechanisms are represented as edges shown in Figure S9B.

We translated these model hypotheses into probabilistic model structures and used Bayesian scoring schemes to quantitatively

assess the plausibility of each hypothesis with respect to experimental data. Since there are a total of 4 allowed edges in eachmodel,

there are a total of 24=16 possible overall topologies to consider. Given a data set D and a set of model topologiesMk, 1%k%16, we

first calculate the posterior probability of each model,

PðMk jDÞ=PðDjMkÞPðMkÞ
PðDÞ : (Equation 14)

Here PðDjMkÞis the marginal likelihood of model Mk, and P (Mk) is the prior probability assigned to the model. We assign equal

prior probability to all four models, that is, P(M1) = P(M2) =.= P(M16). Consequently, we can calculate the posterior odds of two

models as:

PðMk jDÞ
PðMj

��DÞ =PðDjMkÞPðMkÞ
PðD��MjÞPðMjÞ

=
PðDjMkÞ
PðD��MjÞ

; 1%jsk%16: (Equation 15)

This shows that models can be compared through their marginal likelihoods. We now turn to the methods for calculation of the

marginal likelihood for each model hypothesis. Calculating the marginal likelihood depends on the type of probabilistic model and

the assumed parametrization. For model parameters of Mk summarized in a vector qk, the marginal likelihood is expressed as

PðDjMkÞ=
Z

PðDjMk ; qkÞPðqk jMkÞdqk : (Equation 16)

A score is thereby assigned to a model by integrating over all possible parametrizations. In many cases the parametrization of the

model is such that this integral can be solved analytically (we will consider three such methods), in other cases numerical methods

can be used to calculate it. For a general introduction to learning Bayesian networks, we refer the reader to (Neapolitan, 2004).

Computing Dynamic Bayesian Networks
Assume a network on a set of n variables X = fX1;.;Xng. The edges representing themodel structure can then be described through

the parenthood relationship Pa : X/2X . Namely, an edge exists from Xi to Xj if and only if Xi ˛ Pa (Xj), with 1% i, j% n. The model is
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parameterized through a set of conditional probability distributions specifying the distribution of a variable given the value of its

parents, or PðXijPaðXiÞÞ: Through this parenthood relationship, the joint distribution can be written as

PðX1;.;XnÞ=
Yn
i = 1

PðXijPaðXiÞÞ: (Equation 17)

The above equation shows that the joint distribution of the variables can be derived from the local parenthood structure of

each node.

Dynamic Bayesian networks are a special case of Bayesian networks and are used to represent a set of random variables across

multiple time points (Murphy, 2002). There are at least two important advantages of using a dynamic Bayesian network compared to

static Bayesian network in our setting. First, DBNs allow us to use the available time resolved experimental data directly to learn the

model. Second, due to the fact that DBN edges point forward in time, it is possible to model feedback effects (that would normally

result in disallowed loops in Bayesian network graphs). Assuming there are a total of T time points of interest in the process, a DBNwill

consist of a node representing each of n variables at each of the T time points. For instance Xt
i will denote the i-th variable at time

point t. Per the standard assumption in the context of DBNs, we assume that the each variable at time t is independent of all previous

variables given the value of its parent variables at time t � 1. Hence the edges in the network point forward in time and only span a

single time step.

We represented as variables the median (m) of the single-cell measured values of phosphorylated ERK and AKT and the position

along the median vs. IQR landscape (f) of FoxO3 activity at each experimental time point, yielding three random variables. We rep-

resented each random variable at each time point where experimental data was available, resulting in a network with a total of 24

random variables. We assume that the structure of the network does not change over time and also that the parameterization is

time-invariant. This allows us to use all data for pairs of subsequent time points to score models. Figure S9C shows the DBN repre-

sentation of one model topology (the topology with all possible edges present). Assuming that the prior probability of each model

topology is equal, from these marginal likelihood values, we can calculate the marginal probability of a specific edge e being present

as follows

PðeÞ=

X
i

½PðMijDÞje˛Mi�X
i

PðMijDÞ
: (Equation 18)

We applied three different approaches to scoring DBN models and thereby obtaining individual edge probabilities.

DBN Learning with the BGe Score
In the BGe scoring approach (results shown in Figure S7C) (Geiger and Heckerman, 1994; Grzegorczyk, 2010) data is assumed to be

generated from a conditionally Gaussian distribution with a normal-Wishart prior distribution on the model parameters. The obser-

vation is assumed to be distributed as N (m, S) with the conditional distribution of m defined as N (m0, (nW)�1) and the marginal

distribution ofW asW (a, T0), that is, a Wishart distribution with a degrees of freedom and T0 covariance matrix. We define the hyper-

parameters of the priors as follows. We set

n : = 1; a : = n+ 2
m0;j : = 0; 1%j%n;
T0 : =
nða� n� 1Þ

n+ 1
In;n;

where n is the total number of modeled species. The marginal likelihood of a model for a subset of the data D0 on n0 nodes with these

assumptions can be expressed as follows.

PðD0jMkÞ= ð2pÞ�n0=m=2$
� n

n+m

�n0=2
$

cðn0;aÞ
cðn0;a+mÞ$detðT0Þa=2$detðTD0 ;mÞ�ða+mÞ=2

; (Equation 19)

with

TD;m =D0 + ðm� 1Þ$CovðDÞ+ nm

n+m

�
m0 � D

��
m0 � D

�T
; (Equation 20)

and

cðn;aÞ=
 
2an=2$pnðn�1Þ=4Yn

i = 1

G

�
a+ 1� i

2

�!�1

: (Equation 21)
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The full marginal likelihood is then calculated as

PðDjMkÞ=
Yn
i = 1

PðDi;pi jMkÞ
PðDpi jMkÞ ; (Equation 22)

where Di;pi denotes the subset of the data for the i-th node and its parents and Dpi the subset of data for the i-th node’s parents only.

Note that these subsets of data are constructed such that the data for the i-th node is shifted forward by one time-step to align with

the parents’ data.

DBN Learning with g-prior Based Gaussian Score
We adapted the DBN learning approach developed by Hill et al. (results shown in Figure 7F) (Hill et al., 2012). This approach is similar

to the BGe approach in that it assumes a conditional Gaussian probability distribution for the variables in the model. It, however,

chooses a different prior parametrization leading to desirable properties including the fact that parameters don’t need to be user-

set and that the score is invariant to data rescaling. One shortcoming of this method is that it requiresmatrix inversion and is therefore

prone to conditioning problems, Here we only present the formula for the marginal likelihood calculation and refer to Hill et al. (2012)

for the details of the conditional probability model. The formula for calculating the marginal likelihood for node i is

PðDijMkÞ= ð1+mÞ�ð2jpi j�1Þ=2�DT
i Di � m

m+ 1
DT

i Bi

�
BT

i Bi

��1
BT

i Di

��m=2

; (Equation 23)

whereDi is the subset of the data for the i-th variable, shifted forward by one time step,Bi is a designmatrix containing the data for the

i-th node’s parents and possibly the higher order products of the parents’ data to model upstream interactions. We do not use higher

order interaction terms in the current study. The full marginal likelihood is expressed as

PðDjMkÞ=
Yn
i = 1

PðDijMkÞ: (Equation 24)

DBN Learning with the BDe Score
The BDe scoring metric (results shown in Figure S7D) (Friedman et al., 1998; Heckerman et al., 1995) relies on the assumption that

each random variable is binary, that is, Xi˛f0;1g. Consequently, the model is parametrized by a set of conditional probability tables

containing the probabilities that a node takes the value 1 given all possible combinations of values assigned to its parents. For

instance, in a specific topology, the conditional probability table of FoxO3f could consist of the entries PðFoxO3aft =

v1jAKTmt�1 = v2Þ for all combinations of v1;v2˛ð0;1Þ. Note that the conditional probability distributions have to sum to one, that is,P
v1˛f0;1gPðFoxo3aft = v1jAKTmt = v2Þ = 1.

The BDe score assumes a beta distribution as the prior for themodel parameters. Using beta priors, Heckerman et al. (1995) shows

that the marginal likelihood can be expressed as

PðDjMkÞ=
Yn
i = 1

Yqi
j = 1

GðsijÞ
Gðdij + sijÞ

Y
[˛f0;1g

Gðdij[ + sij[Þ
Gðsij[Þ ; (Equation 25)

where i refers to a node Xi, j is a value configuration of the parents of node Xi, with qi the total number of parent value configurations,

and [ indicates the value of node Xi under parent configuration j. For each combination of indices, dij and dij[ represent the observed

count, while sij and sij[ are the prior counts. To make priors consistent among different DAG structures, we choose a fix equivalent

sample sizeS = 1, and set sij[ = S=ð2qiÞ. For instance, assumewewant to score themodelM1, and that we denote X3 = AKTm andX5 =

FoxO3m, with which PaðX5Þ = fX3g, and q5 = 2. Then, for instance, d510 is the number of experiments in which AKTm takes the value 0

and FoxO3m takes the value 0. Similarly, d51 corresponds to the number of experiments in which AKTm takes the value 0.

DATA AND SOFTWARE AVAILABILITY

Raw images and LINCS-compatible CSV datasets can be accessed at http://lincs.hms.harvard.edu/sampattavanich-cellsyst-2018/.

Extracted data in other formats are available at https://doi.org/10.17632/65fkdzt9x5.1.

Scripts used to generate all figures are available at https://github.com/sorgerlab/sampattavanich-cellsyst-2018.
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