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SUMMARY

Combination cancer therapies aim to improve the
probability and magnitude of therapeutic responses
and reduce the likelihood of acquired resistance in
an individual patient. However, drugs are tested in
clinical trials on genetically diverse patient popula-
tions.We show here that patient-to-patient variability
and independent drug action are sufficient to explain
the superiority of many FDA-approved drug combi-
nations in the absence of drug synergy or additivity.
This is also true for combinations tested in patient-
derived tumor xenografts. In a combination ex-
hibiting independent drug action, each patient bene-
fits solely from the drug to which his or her tumor is
most sensitive, with no added benefit from other
drugs. Even when drug combinations exhibit addi-
tivity or synergy in pre-clinical models, patient-to-
patient variability and low cross-resistance make
independent action the dominant mechanism in clin-
ical populations. This insight represents a different
way to interpret trial data and a different way to
design combination therapies.
INTRODUCTION

The genetic and phenotypic heterogeneity of human cancers

poses a substantial obstacle to effective therapy. Heterogeneity

in drug response from one cell to the next within a single tumor

(within-tumor heterogeneity) contributes to disease progression

and drug resistance in each patient. Heterogeneity among pa-

tients (between-tumor heterogeneity) makes the effectiveness

of therapy difficult to predict, even for patients whose tumors

carry the best-available response biomarkers. Overcoming

within-tumor heterogeneity was an early rationale for combina-

tion cancer therapy: Law (1952) and Frei et al. (1965) argued

that cancer cells resistant to one drug might be killed by a sec-

ond, different drug (and vice versa). Early clinical tests of sequen-

tial and combination regimens demonstrated that this logic was

also applicable to between-tumor heterogeneity: patients whose

cancers did not respond to one drug had a chance of responding
1678 Cell 171, 1678–1691, December 14, 2017 ª 2017 Elsevier Inc.
to a second, different drug (Frei et al., 1961; Frei et al., 1965;

Freireich et al., 1963).

In pharmacological terms, drugs in such a combination exhibit

‘‘independent action’’ whereby the response of an individual pa-

tient to two (or more) drugs equals the response to the more

effective drug alone with no additional benefit from the less

effective drug (with benefit measured by tumor shrinkage or

duration of progression-free survival [PFS]). Independent drug

action assumes no pharmacological interaction (neither addi-

tivity nor synergy) and is equivalent to Gaddum’s 1940 definition

of non-interaction (STAR Methods; Gaddum, 1940). Since then,

clinical and pre-clinical studies have confirmed that any single

drug may be active in a subset of tumors (Brugarolas et al.,

2003; Pritchard et al., 2013), supporting the idea that individual

tumors can be more sensitive to one drug in a combination

than others (reflecting their sensitivity to the drugs given

individually).

Many targeted therapies are currently combined based on

molecular reasoning about the functions of targets (Kummar

et al., 2010) or evidence of additive or synergistic effects in cell

line and animal models. Clinical trials based on molecular

reasoning have been successful: for example, co-inhibition of

BRAF and MEK in the treatment of BRAF-mutant melanoma

(Long et al., 2014). Unfortunately, the concept of drug inde-

pendence and its distinction from additivity or synergy has

been lost over time; a drug combination that is clinically superior

(e.g., on a Kaplan-Meier plot) is generally called additive or

synergistic even in the absence of a quantitative test of pharma-

cological interaction (such as Loewe Additivity or Bliss indepen-

dence, which are applicable to cell culture experiments, but not

clinical trials) (Eder et al., 2010). Distinguishing between drug

interaction (additivity or synergy) and drug independence is

important because the two are profoundly different at a mecha-

nistic level; in the former case, benefit is conferred at the level of

individual patients due to drug interaction within tumor cells, and

in the latter case, benefit is conferred only at the level of patient

populations due to variability in drug responses. The distinction

influences the interpretation of clinical trial data, the choice be-

tween sequential and simultaneous treatment, and the design

of new drug combinations.

In this paper, we attempt to distinguish between drug inter-

action and independence in three complementary ways: (1)

by re-analyzing human clinical trial data in which single and

combination therapies are compared, (2) by mining a database

mailto:peter_sorger@hms.harvard.edu
https://doi.org/10.1016/j.cell.2017.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2017.11.009&domain=pdf


Legend

A

B

C

24%54%

65%65%

numbers: response rate
(by ≥30% tumor shrinkage)100

50

0

50

100

Patients

B
es

tc
ha

ng
e

fro
m

ba
se

lin
e

tu
m

or
vo

lu
m

e
(%

)

Median: 3.0 7.1 12.9 14.312.7

0 3 6 9 12 15
0

20

40

60

80

100

Progression free survival (months)

P
at

ie
nt

s
(%

)

Change in tumor volume

Duration of response

Effect of

0 0.5 1
0

3

6

9

12

15

3.0

7.1

12.9

Correlation in response,

M
ed

ia
n

P
FS

(m
on

th
s) 12.7

14.3

Clinical data:
Ipilimumab
Nivolumab
Combination

Sampling of monotherapy responses:
Uncorrelated ( =0)
Partially correlated ( =0.25 )

Figure 1. Responses to Combination Immu-

notherapy Are Consistent with Benefit

Arising from Variability in Therapeutic

Response to Constituent Drugs

(A and B) (A) The response in a drug trial of human

melanomas to nivolumab, or ipilimumab, or both in

combination, as depicted by change from baseline

tumor volume (a waterfall plot) or (B) duration of

progression-free survival (PFS; a Kaplan-Meier

plot). Data from a phase III trial by Larkin et al.

(2015). Gray curve: responses of in silico patients

with random sampling from the observed re-

sponses to individual drugs under the assumption

of drug independence, where each patient’s

response to a combination is their strongest

monotherapy response. Black curve: sampling

with responses assumed to be positively corre-

lated with Spearman’s r = 0.25.

(C) The median PFS predicted by independent

drug action (black) depends on the degree

of correlation in drug responses. Dashed lines:

observed median PFS of monotherapies or

combination.

See also Figure S1, Table S1, and Data S1.
of drug responses for patient-derived tumor xenografts (PDXs),

which are generally regarded as the best available animal sur-

rogate of human cancer (DeRose et al., 2011; Gao et al., 2015;

Hidalgo et al., 2014), and (3) by using a first-principles compu-

tational model of drug responses in a heterogeneous popula-

tion of tumors. Remarkably, for many effective and approved

combinations, we conclude that therapeutic benefit is likely

to arise from independent drug action rather than drug addi-

tivity or synergy. This analysis identifies occasional cases of

truly synergistic drug interactions and provides an alternative

approach to designing new sequential or combination treat-

ment regimens.
Cell
RESULTS

An Effective Combination
Immunotherapy Can Be Explained
by Independent Drug Action
The observed responsiveness of human

melanomas to ipilimumab (anti-CTLA-4)

and nivolumab (anti-PD-1) individually

and in combination demonstrates the

benefits achievable with drug indepen-

dence. In a recent phase III trial, 24%

and 54% of patients (respectively) having

previously untreated disease exhibited an

objective response to one or the other

drug (R 30% reduction in volume of a

reference lesion), while the remaining

patients experienced little or no benefit

(Figure 1A) (Larkin et al., 2015). When

ipilimumab and nivolumab were tested

in combination, median PFS increased

from 3 or 7 months on monotherapy

to >12 months on combination ther-
apy—a highly significant improvement. Importantly, combina-

tion doses were equal to monotherapy doses except for the first

two cycles of nivolumab (dosing for all trials analyzed in this

paper is described in Table S1). Anticipated benefits under the

assumption of drug independence were calculated by (1) assign-

ing each simulated patient a magnitude of response for each

drug individually based on random sampling from the clinically

observed monotherapy response distributions and (2) assuming

no additive or synergistic effect so that each patient’s response

equals the better one of their two single-agent responses (Fig-

ures 1A [tumor volume change], 1B [PFS], and S1). This is equiv-

alent to the benefit that would accrue were it possible to give
171, 1678–1691, December 14, 2017 1679
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Figure 2. PDX Data Show that Because Different Tumors Respond

to Different Drugs, Independent Drug Action Is Sufficient for a

Combination Therapy to Improve Response Distribution in a

Population

(A) Correlations in drug response (Spearman’s r applied to PFS) were calcu-

lated fromPDX trials where the same tumors receivemany different treatments

(Gao et al., 2015) (STAR Methods).

(B) PFS measured by Gao et al. (2015) in 41 patient-derived gastric

cancer xenografts when treated with alpelisib (PI3K inhibitor) or with LLM871

(FGFR2/4 antibody-drug conjugate).

(C) Probability of PFS in gastric cancer xenografts when treated with alpelisib,

LLM871, or a hypothetical combination of the two drugs, assuming indepen-

dent action where each tumor’s response is the best one of its observed

responses to the two monotherapies.

See also Figure S3 and Data S1.
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each patient the better of the two drugs for her/his individual

tumor. In the case of ipilimumab plus nivolumab, independent

action predicts a median PFS of 14 months, similar to what

was observed clinically. What is unexpected in this example is

the large and clinically significant benefit that can be achieved

by independent drug action.

First principles reasoning establishes that the benefits

conferred by independent drug action depend on patient-to-pa-

tient variability in responsiveness to the drugs making up the

combination and the degree to which responsiveness is corre-

lated. Across all of the trials we examined, the distribution of

PFS is broad and approximately log normal (a bell-shaped distri-

bution on a logarithmic timescale). Even when patients are strat-

ified by the best available genetic biomarkers, PFS can have

coefficient of variation (CV) as large as 100% (Figure S2).

When drug responses are uncorrelated (r = 0), the benefits of in-

dependent drug action are maximal because each patient has

two fully separate chances of above-average response. No

benefit is predicted at r = 1.0, which corresponds to complete

cross-resistance (Figure 1C). The effects of ipilimumab and nivo-

lumab in clinical trials aremost consistent with weakly correlated

responses (low cross-resistance; r z 0.25; Figures 1B, black

line, and 1C, black dot); for example, the benefits of targeting

PD-1 alone are similar whether or not CTLA-4 has previously

been targeted (Hamid et al., 2013).

Determining Correlation in Drug Response through
Analysis of Patient-Derived Tumor Xenografts
PDX studies comparing the responsiveness of a single tumor to

multiple drugs provide the most direct means to determine r. In

PDX studies by Gao et al. (2015), xenografts of 6 tumor types

from 277 patients were exposed to 1 of 62 monotherapies or

combination therapies. Across >400 treatment models tested

in replicates (net > 2000 animals), fewer than 10% of biological

replicates differed by >1 RECIST category, showing that

response was reproducible across animals and making compar-

ison of each tumor’s response to different drugs feasible. Tumor

type (tissue of origin) was poorly predictive of optimal therapy:

the drug conferring the greatest average benefit for each class

of tumor proved to be optimal for only 49% of individual tumors,

with 51% of tumors demonstrating substantially longer PFS on a

different drug (a minimum increase in PFS of 4 and average of

12 weeks) (Figure S3A). Thus, like human patients, mice carrying

PDX tumors benefit from a ‘‘precision medicine’’ approach in

which therapy is informed by data other than tissue of origin.

The observed correlation in response for all drugs tested by

Gao et al. was r = 0.37 (average), with lower correlation between

targeted and cytotoxic drugs (average r = 0.28) and higher cor-

relation between drugs with related targets (average r = 0.51)

(Figure 2A and STAR Methods). All of these values are within

the range over which independent action can improve PFS.

PDX studies clearly illustrate how independent action can

provide therapeutic benefit. For example, in the case of mice

bearing one of 41 unique gastric PDX cancers, 27% of tumors

demonstrated PFS of 3 months or more when treated with alpe-

lisib (a PI3K inhibitor in Phase III trials), as did 17% of tumors

treated with LLM871 (a pre-clinical FGFR2/4 antibody-drug con-

jugate) (Gao et al., 2015). However, found among 26 tumor
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Figure 3. In PDX Trial Data, Independent

Drug Action Explains Most of the Benefit

of Combination Therapy with Rare Excep-

tions of Probable Synergy

(A) Probability of PFS over time, comparing each

PDX’s average response to monotherapies (green)

or average response to combinations (blue) (Gao

et al., 2015). Choosing random pairs of mono-

therapies and assuming independent action

(black) reproduces much of the observed benefit

of combinations (no significant difference in haz-

ard ratio).

(B) Box-whisker plot of response rates by RECIST

(stable, partial, or complete response) of all mon-

otherapies (shown as ‘‘M’’ in the figure), all com-

binations (‘‘C’’), or random pairs of monotherapies

(‘‘RP’’); *** p < 10�5 by Kolmogorov-Smirnov

test, ns denotes not significant.

(C) Survival distributions for the best observed

response of each PDX to any monotherapy or to

any combination are statistically indistinguishable.

(D) Hazard ratios (with 95% CI) from survival

distributions that were computed, under the

assumption of independent drug action, for multi-

drug combinations in which each PDX is treated

with the 0 to 4 most effective monotherapies for

that tumor type.

(E) PFS over time for a select few drug combina-

tions and their constituent monotherapies, where

combination responses that exceed independent

drug action indicate additive or synergistic effects

in individual tumors (Figure S4D displays all six

cases).

See also Figures S3 and S4 and Data S1.
xenografts with below-average responses to alpelisib, were 5 of

the 7 tumors with the greatest responses to LLM871 (response

correlation Spearman’s r = 0.28; Figure 2B). The combination

of alpelisib plus LLM871 is therefore expected, under a model

of drug independence, to provide significantly greater benefit

than either drug alone (41% survival at 3 months; hazard ratio

versus alpelisib alone 0.64; 95% confidence interval [CI] 0.41

to 1.00; p = 0.05; n = 41 xenografts; Figure 2C), simply because

poor responders to alpelisib have a chance of responding well to

LLM871.

Independent Drug Action Explains Much of the Benefit
of Combination Therapy in PDX Trials
Gao et al. observed that across all drugs and tumor types,

combination therapies were broadly superior to monotherapies.

Focusing on the most systematic subset of these data (Fig-

ure S3B), we find that drug independence can quantitatively
Cell
account for almost all of this superiority

(Figures 3A–3C). Except in the case of

melanoma PDXs (discussed at the end

of this section), the benefit predicted for

randomly selected pairs of monothera-

pies was not significantly different from

the average benefit observed with empir-

ically tested combinations (hazard ratio
for combinations versus random monotherapy pairs 1.13; 95%

CI 0.93 to 1.38; p = 0.23; n = 197 PDXs) (Figures 3A, 3B, S4A,

and S4B). As the number of drugs in the combination increases,

benefit is predicted to increase, but with diminishing returns (Fig-

ure 3D), consistent with trials showing that more intensive com-

bination regimens do not necessarily confer additional benefit

(Bookman et al., 2009; Fisher et al., 1993).

Combination therapies that work by independent action are

predicted to confer benefits equal to those of the best monother-

apy for each individual tumor; in contrast, pharmacological addi-

tivity or synergy predicts superiority across the population for the

best combinations relative to the best monotherapies. When all

PDX tumors and drugs were examined, we found that that best

monotherapies and best combinations selected after the fact

produced statistically indistinguishable survival distributions

(hazard ratio for monotherapies versus combinations 0.95;

95% CI 0.79 to 1.15; p = 0.61; n = 230) (Figures 3C and S4C).
171, 1678–1691, December 14, 2017 1681
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Thus, giving each PDX tumor the best drug for that individual tu-

mor based on postdiction (i.e., ‘‘perfect’’ tumor stratification)

conferred the same benefit as using the best combination.

Conversely, combination therapy in human populations may

compensate for our current inability to predict which drug will

be optimal for each patient.

A small number of the drug combinations tested by Gao et al.

conferred benefits that were substantially greater than what is

expected from independence of action (Figures 3E and S4D).

Most exceptionally, melanomas treated with binimetinib

(a MEK inhibitor in phase III testing) plus ribociclib (LEE011;

a CDK4/6 inhibitor in phase III testing) exhibited five times longer

PFS than predicted by independent action. Because drug inde-

pendence is the null model for scoring drug interaction, it is

reasonable to conclude that ribociclib and binimetinib exhibit

additive or synergistic interaction.

Analysis of Human Clinical Trial Data
To determine whether independent drug action might explain re-

sults from human clinical trials, we analyzed phase II and phase

III data for which Kaplan-Meier survival curves are available for

two drugs individually and for their combination in the same

disease subtype and treatment stage (e.g., first line or recurrent

disease). This analysis is necessarily limited to trials in which

data are available for monotherapy and combination arms and

in which dosing was comparable across monotherapy and com-

bination trials; it is not possible to compare trials in which drugs

in a combination are used at different doses than in monother-

apy. Suitable data exist for melanoma, ovarian, colorectal,

pancreatic, and breast cancers treated with inhibitors of intracel-

lular kinases, immunotherapies, chemotherapies, and growth-

factor-receptor inhibitors, as well as drugs that inhibit DNA repair

and angiogenesis (Figure 4 and Table S1). Survival curves pre-

dicted by independent drug action were simulated by sampling

observed single-agent distributions, with the net response of

each simulated patient made equal to the better of the two

monotherapy responses (as in Figure 1). Because the bulk of
Figure 4. Survival Distributions Observed in Human Clinical Trials of Co

Drug Action Given the Observed Variability in Response to Monothera

Human clinical trials of combination therapies were identified in which the efficac

dosage (one ‘‘constituent’’ could be a combination of fewer drugs) in patient co

bination treatment were simulated assuming drug independence by sampling obs

data, Figure 2A), which generates a range of predictions in gray. Data obtained f

(A) Paclitaxel plus carboplatin with or without olaparib (Oza et al., 2015) and olap

(B) First-line chemotherapy (anthracycline plus cyclophosphamide or paclitaxe

(Slamon et al., 2001) and first-line trastuzumab monotherapy (Vogel et al., 2002)

(C) Gemcitabine with or without erlotinib (Moore et al., 2007) and erlotinib monot

(D) Dabrafenib with or without trametinib (Long et al., 2014) and trametinib

(Kim et al., 2013).

(E) Gemcitabine plus carboplatin with or without bevacizumab (Aghajanian e

(Burger et al., 2007).

(F) Chemotherapy only (FOLFOX4: fluorouracil, leucovorin, and oxaliplatin), beva

(G) 5-fluorouracil, oxaliplatin, or both (Ducreux et al., 2004).

(H) Benefits attributable to drug synergy were quantified as the hazard ratio of ob

drug action.

(I) Pooled analysis of FOLFOX4 or FOLFIRI (fluorouracil, leucovorin, irinotecan) w

for chemotherapy-refractory disease (Karapetis et al., 2008) (in all cases analyzi

monotherapy over supportive care were added to overall survival with first-line c

See also Figures S1 and S5, Tables S1 and S2, and Data S1.
available trial data involved targeted drugs plus cytotoxic drugs,

sampling was conducted with partial correlation in the range

observed for cytotoxic and targeted therapies in PDX studies

(r = 0.28 ± 0.20; Figures 2A and S5A; code is provided in

Data S1).

The clinically observed benefits for themajority of cancer com-

bination therapies we analyzed were indistinguishable from

those predicted for independent drug action (Figures 1 and

4A–4D). For example, the addition of trastuzumab to chemo-

therapy in HER2-positive metastatic breast cancer extends

PFS to the degree predicted by independent action. Combina-

tions of olaparib plus chemotherapy in ovarian cancer and erlo-

tinib plus gemcitabine in pancreatic cancer were also consistent

with drug independence. When drugs have similar mechanisms

of action—for example, inhibitors of BRAF and MEK kinases in

BRAF mutant melanoma—PDX data reveal more highly corre-

lated responses (Spearman’s r = 0.72), but even so, the benefit

of this drug combination in human patients is no better than that

expected for independent action (Figure 4D). Since these com-

binations are FDA approved, we conclude that the benefits

conferred by independent drug action can be clinically and

statistically significant relative to monotherapy.

Drug interaction and drug independence represent two

competing hypotheses to explain the superiority of combination

therapy. By analogy to the null models for Loewe Additivity and

Bliss independence, independent drug action predicts clinical

effect under a null hypothesis of ‘‘no interaction.’’ This extends

similar, albeit simpler, calculations of independent drug action

that were observed, in the 1960s, to be accurate in describing

combination therapy for leukemia (Frei et al., 1965). The

competing hypotheses of drug independence and interaction

can be rigorously compared based on goodness of fit to data

with or without a penalty for model complexity (evaluated by

Akaike InformationCriterion [AIC]). The simplest responsemodels

are phenomenological and involved scaling survival curves for

monotherapies (from Figures 1 and 4A–4D) in the vertical or

horizontal directions (or both) to clinical data on combination
mbination Therapies Are Similar to Those Expected for Independent

py

y of two drugs could be compared to the constituents alone at same or similar

horts with matching type and stage of disease. PFS distributions under com-

ervedmonotherapy responses with r = 0.28 ± 0.20 (correlation range from PDX

rom the following trials:

arib monotherapy (Liu et al., 2014).

l only in event of prior adjuvant anthracycline) with or without trastuzumab

.

herapy in gemcitabine-resistant patients (Renouf et al., 2014).

monotherapy (patient subset not previously treated with BRAF inhibitor)

t al., 2012) and bevacizumab monotherapy in platinum-resistant patients

cizumab only, or FOLFOX4 plus bevacizumab (Giantonio et al., 2007).

served PFS with combination therapy versus PFS predicted with independent

ith or without cetuximab (Bokemeyer et al., 2012) and cetuximab monotherapy

ng only KRAS-wild-type tumors). In this simulation, the benefits of cetuximab

hemotherapy.
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Figure 5. Using Monotherapy Trials to Nominate Drug Combinations Based on Independent Drug Action

All possible pairs of monotherapies tested in PDX models by Gao et al. (2015) were simulated under the hypothesis of independent drug action, in which each

xenograft’s response to a combination is the best of the two observed monotherapy responses.

(legend continued on next page)
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therapies. Even with trial-specific parameter fitting, these models

had inferior goodness of fit as compared to the predictions of

a drug independence model with no fitting. With respect

to complexity, curve-fit models were judged by AIC to be

7000-fold less probable than models of drug independence

(TableS2);mechanistically detailedmodelswill be even lessprob-

able because they require more parameters and will be penalized

by AIC.We therefore conclude that drug interaction is only neces-

sary as an explanation for the majority of combination clinical trial

data if thedrugsareassumed tohavestrongcross-resistance (i.e.,

highly correlated responses; Figure S5A). While this is possible in

principle, clinical data on patient populations (and PDX data

analyzed in Figures 2 and 3) suggest that drugs with different

mechanism of action rarely exhibit complete cross-resistance,

and even drugs with similar mechanisms are not necessarily

cross-resistant (e.g., doxorubicin plus ifosfamide versus

epirubicin plus cyclophosphamide; [Polyzos et al., 2000]). We

will later discuss why independent action is so prevalent in the

faceof commonlyobserved ‘‘drugsynergy’’ inpre-clinical studies.

Additional empirical evidence consistent with independent

drug action can be found in combinations that are equally effec-

tive when administered sequentially or simultaneously. For

example, increases in survival observed in a clinical trial of cetux-

imab as a salvage monotherapy for chemotherapy-refractory

metastatic KRAS+ colorectal carcinoma precisely matched

those of cetuximab combined with chemotherapy as a first-line

combination (Figure 4I). Note, however, that no data are avail-

able on 20% of patients still alive at the end of the trials. This

caveat about long-term survival is generally applicable because

available trial data rarely quantify very long-term survival.

In approximately one-third of combinations examined, inde-

pendent action was insufficient to explain observed clinical

benefit (Figure 4H). For example, the combination of bevacizu-

mab with chemotherapy in ovarian and colorectal cancers (Fig-

ures 4E and 4F) extends PFS �2 months longer than expected

for drug independence. This finding is consistent with reports

that bevacizumab enhances response to chemotherapy via

normalization of tumor vasculature (Goel et al., 2011). 5-fluoro-

uracil plus oxaliplatin show synergy in advanced pancreatic can-

cers; no benefit is expected from independent action in this

case, because monotherapy responses are uniformly brief (Fig-

ure 4G). In low-grade oligodendroglioma, PFS for chemotherapy

plus radiation is also superior to the prediction of independent

action (Figure S5B).

Implications for Design of New Combination Therapies
Our findings suggest an approach to designing combination or

sequential regimens based on maximizing the chance of
(A) Histogram of hazard ratio for disease progression for all possible combinatio

colored by the probability that the hazard ratio < 1.

(B) Survival distributions for best predicted combinations, and observed survival w

best prediction for gastric cancer). Left: Bar charts of PFS in each PDX. Right: surv

projected improvements in response rate exceed what is expected from animal-to

(C) PFS for the best observed monotherapies, best observed combinations, and b

colorectal cancer.

(D) PFS for combination therapies predicted from a clinical trial comparin

(Shaw et al., 2013). Simulations used response correlation r = 0.28 ± 0.20, as ob

See also Figure S6 and Data S1.
response to at least one drug. Simulation shows that drugs

cannot be combined at random; across all possible drug pairs

in PDX data from Gao et al. (2015), fewer than 5% of combina-

tions of individually active drugs were expected to improve

PFS when compared to the best observed monotherapy per tu-

mor type (Figure 5A). This low rate of success is consistent with

evidence that drug combinations superior to individual ‘‘stan-

dard therapies’’ can be challenging to identify in the clinic.

In four of six tumor types we were able to identify combi-

nations with the potential to significantly increase PFS as

compared to monotherapy by independent drug action (Figures

2C and 5B: hazard ratio 0.69; 95% CI 0.55 to 0.87; p = 0.002;

n = 148 PDXs analyzed in aggregate, because individual tumor

types had too few PDXs for statistical power). In these cases,

the predicted benefits matched the observed benefits of the

best combinations tested experimentally (Figures 5C and S6;

hazard ratio for predicted versus observed 0.84; 95% CI 0.67

to 1.07; p = 0.15; n = 148 PDXs). The combinations predicted

to be most efficacious in the case of pancreatic (gemcitabine

plus binimetinib) and breast cancer (buparlisib plus paclitaxel)

were among the least cross-resistant of all drugs tested in PDX

animals (Spearman’s r < 0.1).

Human trial data for monotherapies can also be used to pre-

dict the effects of new drug combinations acting independently.

For example, in the case of non-small cell lung cancers having

ALK rearrangement (Shaw et al., 2013), independent action pre-

dicts that a combination of crizotinib plus pemetrexed should

confer benefit in excess of monotherapy but that this should

not be true of crizotinib plus docetaxel (Figure 5D). The combina-

tion of crizotinib plus pemetrexed is reportedly tolerable at full

doses (Gandhi et al., 2013) and exhibits no cross-resistance

(Berge et al., 2013); these are the traits desirable in combinations

of drugs that act independently.

Modeling Heterogeneity in Therapeutic Response
To thoroughly explore variables impacting the efficacy of inde-

pendent drug action, we adapted a classic model of tumor

kinetics, developed by Steel (1967), in which tumor growth de-

pends on the balance between cell growth (g) and cell loss (f)

(Figure 6A and STAR Methods). The effects of anti-cancer drugs

were modeled as reducing g, whereby high drug sensitivity

results in a ‘‘log-kill’’ effect. Tumor-to-tumor variability was intro-

duced by sampling drug sensitivity from a log-normal distribu-

tion consistent with clinical trials (Figures 6B and S1).

Kinetic parameters (e.g., cell division rates and cell loss factor)

were calibrated against data from human carcinomas (Data S1

and STAR Methods) and results were robust to variation over

clinically relevant parameter ranges (Figure S7A). Simulated
ns compared to the overall best monotherapy for each tumor type. Bars are

ith constituent monotherapies, for each of three tumor types (Figure 2 showed

ival curves observed for monotherapies and predicted for their combination. All

-animal variability reported by Gao et al. (2015). (All p values < 0.05; Figure S6).

est predicted combinations per tumor type for gastric, pancreatic, breast, and

g monotherapies for non-small cell lung cancer with ALK-rearrangement

served in PDX trials (Figure 2A).
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Figure 6. Simulations of Patient Heteroge-

neity in Clinical Trials Show that Indepen-

dent Drug Action Is Similar in Effect to

Additivity or Synergy

(A) A classic model of tumor kinetics involving

competing processes of growth (g) and cell

loss (gf). Treatment with inhibitor at dose I slows

growth by (1+I/KI)
�1.

(B) Drug sensitivity KI was taken to be log-normally

distributed across a patient population (gray dis-

tribution). The effect of therapy on tumor prolifer-

ation at any given KI (red line) is quantified by

the growth rate inhibition metric (GR) (Hafner

et al., 2016).

(C) A simulated waterfall plot of changes in tumor

volume after 8 weeks of monotherapy.

(D) Representative traces of tumor volume over

time in individual tumors treated with mono-

therapy. Tumors are modeled with pre-existing

drug-resistant subclones that cause eventual

progression.

(E) PFS (time to tumor volume doubling) under

monotherapies or combination therapies. A com-

bination of independently acting drugs with benefit

from patient-to-patient variability was modeled

by assigning each tumor a KI for each drug,

comparing low, medium, or high correlation be-

tween the drugs. Under independent action, tumor

cells only respond to themost effective single drug

(no additive effect). Additive or synergistic drug

combinations weremodeled as acting like a higher

dose of monotherapy.

(F) PFS time with a combination that requires dose

reductions to 66% of single agent doses, equiva-

lent to an antagonistic interaction with full doses.

Precision monotherapy was modeled by treating

each tumor with the best one of two drugs for that

tumor.

(G) The hazard ratio of an independent drug

combination, versus monotherapy, as a function

of drug activity and response correlation between

drugs. Lower panel: PFS for each numbered

scenario.

See also Figures S2 and S7 and Data S1.
tumors were observed to grow or shrink on treatment with a

degree of variability similar to that observed in drug trials (Fig-

ure 6C). Moreover, when acquired drug resistance was simu-

lated (STAR Methods), variable periods of remission and tumor

regrowth were observed (Figure 6D), and PFS exhibited the

variability observed in human clinical data (Figure 6E). Results

held for continuous or cyclical dosing and also when using the

Gompertz growth model (Figure S7B).

Wemodeled a drug combination involving independent action

by sampling from log-normal distributions to assign in silico

tumors a different sensitivity parameter for each drug (Figure 6B),

with a range of correlation in response. Each tumor cell was

affected only by the drug to which it was most sensitive.
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As expected from PDX data, two-drug

combination therapy can substantially

improve PFS simply because some tu-

mors respond well to drug 1, some to
drug 2, and some to both drugs (Figure 6E). Modeling also al-

lowed us to compare independent action with drug additivity

or synergy at a cellular level (with no benefit from patient-to-pa-

tient variability because drugs are assumed to have complete

cross-resistance). Treating synergy in the manner defined by

Loewe (Berenbaum, 1989), in which two drugs are equivalent

to a higher dose of one drug, we found that the benefits of inde-

pendent action with uncorrelated response equaled those of a

three-fold increase in drug dose. This represents a combination

index of 0.33, which has been interpreted as significant synergy

in pre-clinical studies. The benefit of having uncorrelated drug

responses is so large that combination therapies could require

substantial dose reduction—or equivalently, have antagonistic



interaction in individuals—and still produce superior survival to

monotherapy in the population (Figure 6F). Theory predicts that

in such scenarios, giving each patient their most effective single

agent at full dose (precision monotherapy) might be superior to

combination therapy. Simulation also shows that drug indepen-

dence and additivity or synergy are not mutually exclusive and

can jointly contribute to superior outcomes (Figure S7C). The

CLEOPATRA study involving treatment of HER2AMP metastatic

breast cancer with docetaxel plus a pair of anti-HER2 antibodies

thought to act synergistically on different epitopes on a single

target (pertuzumab and trastuzumab) may exemplify a combina-

tion involving both independence and synergy (Fuentes et al.,

2011; Swain et al., 2015).

Modeling also enables systematic exploration of factors that

determine the effectiveness of combination therapy under the

assumption of independent action. The greatest benefits arise

with drugs that have similar activities when used as monothera-

pies and a low-correlation coefficient (Figure 6F). Benefit can still

arise with partial correlation (some cross-resistance) when both

drugs have good individual activity, and a second drug of

modest activity can confer benefit provided that it lacks cross-

resistance. If present, drug additivity or synergy can confer addi-

tional benefits. Other parameters are also influential, such as the

degree of variability in response, and we provide software for

exploring potential combinations based on real clinical trials

data or on simulations with parameters commonly encountered

in trials (Data S1).

DISCUSSION

In an era in which the majority of new cancer medicines target

specific genes, many combination therapies have a biological

rationale based on a molecular understanding of drug action

and interaction. However, theory predicts, and drug trials in hu-

mans and PDX animals show, that the superiority of many

approved combinations can be explained by the simpler and

older ‘‘null-hypothesis’’ of independent drug action. Indepen-

dent action appears to be a sufficient explanation even for

drug trials stratified using response biomarkers (e.g., HER2AMP

for trastuzumab [Slamon et al., 2001]) and for drugs with similar

mechanisms of action (e.g., combination immunotherapy or

combination kinase inhibition). The historical development of

cytotoxic combination therapies, which often involve three or

more drugs, may also have involved independent drug action,

but this is largely a speculation for lack of sufficient data. A clear

exception is childhood acute lymphoblastic leukemia, where the

benefits of two-drug combinations were originally explained by

independent action (Frei et al., 1965). Unfortunately, the absence

of data also precludes us from assessing the relevance of inde-

pendent action to neo-adjuvant or adjuvant combinations of

cytotoxic agents.

There is no doubt that additivity or synergy is exhibited by

some drug combinations that achieve responses that are supe-

rior to those expected of independent drug action. In the case of

curable blood cancers, for example, monotherapies achieve

few, if any, cures, whereas multi-agent cure rates are as high

as 80% (Frei, 1985). Thus, the long-term goal of translational

cancer research rightly remains the identification of drug combi-
nations that act in an additive or synergistic fashion on human

tumors. Computational modeling and clinical data (Swain et al.,

2015) suggest that synergy and independent action can jointly

contribute to improve patient benefit.

The efficacy of independent action in a drug combination de-

pends on the extent of patient-to-patient variability and degree

of correlation among monotherapy responses. Variability in

response can be measured directly and typically approximates

a log-normal distribution. Long tails in survival distributions in-

crease the benefit of independent drug action because a subset

of patients may experience benefit that is well above average.

Correlation in drug response cannot be measured directly in

human trials but can be calculated from PDX data or inferred

from clinical evidence of cross-resistance or the lack thereof,

which can be identified in trials of sequential treatments. For

the majority of drug combinations found to confer benefit

through independent action, clinical data indicate low rates of

cross-resistance (BRAF and MEK co-inhibition is an exception).

In general, high inter-patient variability and relatively low correla-

tion between drugs is consistent with response to each drug

being a multigenic trait.

Clinical trials are increasingly guided by biomarkers that aim

to predict which patients will respond to which drugs. In some

diseases, individual patients are also shifted from one therapy

to another following disease progression. These considerations

are consistent with the idea that combination therapies provide

benefit in part by overcoming imperfect knowledge of how well

any individual tumor will respond to a specific drug. However,

our findings suggest that caution is necessary when interpret-

ing positive clinical results for a drug combination in terms of

pharmacological additivity or synergy. This is a distinct phe-

nomenon from clinical additivity, which is more loosely defined

as improvement in response rate or survival distributions for

populations of patients (Figure 7A). Based on first principles

reasoning and information criteria for model selection, we

argue that independent drug action represents a null model

for PDX or patient data that is analogous to the null models

used to assess synergy in cell culture (Berenbaum, 1989). If

clinical benefit does not surpass the predictions of independent

drug action, then this explanation should be considered the

more parsimonious.

Why do drugs that exhibit synergy in cell culture and xeno-

graft mice confer benefits in patients no greater than those ex-

pected for independent action? Possible explanations include

unfavorable pharmacokinetics (Undevia et al., 2005), the dif-

ficulty of scoring synergy in pre-clinical data (Hafner et al.,

2016), and the sensitivity of synergy to genetic variation. Drug

interactions are also known to vary with dose, and our analysis

is relevant only to clinical dosing, which frequently differs from

pre-clinical dose. However, a much simpler explanation rooted

in the variability of response may suffice. In a combination ther-

apy involving drugs X plus Y—both of which are relatively

active on their own—some patients respond strongly to X

and some to Y (Figure 7B); a third subset responds well to

both drugs, and a fourth subset to neither drug. Drug additivity

or synergy, if it exists, will only be detectable in the subset of

patients (Figure 7B, yellow) that exhibit a partial response to

drugs X and Y (analogous to synergy in cell culture being
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(A) Superior responses to combination therapy versus monotherapy have two

possible explanations: two drugs could act together with additivity or synergy

to induce stronger responses in individuals, or two drugs could improve the

response distribution solely by independent action because some tumors are

sensitive to the first drug and some other tumors more sensitive to the

second drug.
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greatest at drug doses provoking intermediate responses). The

effects of synergy in this patient subset is obscured for pre-

cisely the same reason that independent action is beneficial:

high patient-to-patient variability.

Independent drug action provides a simple explanation for

trials in which sequential and combination therapy are equiva-

lent (although other explanations are also possible). For

example, in metastatic breast cancer, phase III trials and

meta-analysis show that whereas combinations of cytotoxic

agents achieve higher response rates than monotherapies,

overall survival is no better than when the same drugs are

used sequentially, switching from one drug to the next upon

progression (Cardoso et al., 2009; Sledge et al., 2003). The

benefits of combinations based on independent action provide

a rationale for sequential dosing, but whether sequential or

simultaneous drug administration will be optimal for any spe-

cific disease depends on factors beyond the scope of the cur-

rent paper, such as pharmacokinetics and the evolution of drug

resistance (Bozic et al., 2013).

Toxicity is a critical consideration in the design of any combi-

nation but is not studied here due to insufficient data. Combina-

tions acting by independence have the advantage in principle

that they can be delivered as toxicity-sparing sequential regi-

mens. Our ability to exploit independent drug action would be

improved by better estimates of r, which could be obtained by

aggregating PDX data on monotherapies from ‘‘mouse avatar’’

trials, in which a tumor from a single patient is tested against a

panel of drugs (Malaney et al., 2014). Our analysis also indicates

a need for additional PDX data on cytotoxic drugs, which consti-

tute many of the most effective anti-cancer treatments available.

The analysis in this paper has several caveats that might be

addressable in future studies. First, we are able to analyze only

those drug combinations in which dosing for monotherapy and

combination therapy is similar. Second, we cannot analyze ben-

efits in the 10% to 40% of patients who experience PFS beyond

the end of most clinical trials. For those patients, two strong drug

responses might kill more tumor cells and confer a synergistic

survival benefit; whether this is true could be addressed by

long-term follow-up of trials. Third, synergy might be more prev-

alent in clinical scenarios with higher response rates, such as

neo-adjuvant treatments for primary tumors (Figure 7C). Simi-

larly, in the case of hypothetical drug pairs with strong cross-

resistance or correlation in response (Figure 7D), independent

action will be relatively unimportant.

Given these caveats, how might the theories in this paper

be tested? Drug independence and interaction could be
(B) Wide variation in drug response—and low correlation in responsiveness to

different drugs—predicts that most patients will benefit from combination

therapy because of independent drug action. Each circle represents a tumor,

with intensity of blue or red color indicating strength of response to each of two

drugs. Most tumors primarily respond to one drug or neither. Additivity or

synergy, if present, might be evident only in a minority of patients with partial

response to each drug (yellow region).

(C) In situations with high response rates, more patients might experience

synergistic benefit from two strong responses.

(D) In situations where responses to two drugs are highly correlated, as may

occur with similar mechanisms of action, benefit may be more dependent on

additive or synergistic effect.



distinguished in individual human tumors by personal drug sensi-

tivity profiles. Several such technologies are in development,

including implantable or microinjection devices to measure in

situ drug response in humans (Jonas et al., 2015; Klinghoffer

et al., 2015) and drug response profiling on tumor xenografts

or biopsies (Hidalgo et al., 2014). A weakness of such assays

is that they do not account for differences in pharmacokinetics

which may play a substantial role in patient-to-patient variability

(Undevia et al., 2005). Such differences could bemeasured using

newly developed pharmacodynamic assays that measure drug

effects at the level of individual tumor cells, such as by multi-

dimensional histology.

Clinical studies involving accurate pre-exposure response

biomarkers or on-treatment pharmacodynamic assays will

make it possible to test two predictions of our theory. First, pre-

cise patient stratification might reveal cases of drug synergy in

specific subpopulations that are masked in current studies by

high patient-to-patient variability. Second, for drug combina-

tions and patient cohorts in which independent action is in fact

the basis of superiority, we predict that biomarker-guided deliv-

ery will make it possible to use fewer drugs. For example, basal-

like subtypes of HER2AMP breast cancer were found to respond

no better to trastuzumab plus chemotherapy than to chemo-

therapy alone (Perez et al., 2016). The advantage of substituting

a single drug for a combination is the possibility of minimizing

toxicity and optimizing dosing; drugs in a combination are often

used at a lower dose than in monotherapy.

Althoughwe find little evidence of additivity or synergy inmany

successful combination therapies, this should not be interpreted

as a negative result, because independent drug action provides

an alternative rationale for the near-term design of new combina-

tions. As understanding of drug interaction in cancer cells im-

proves and variability in drug response is reduced through better

patient stratification, we expect synergistic drug combinations to

provide superior benefits to independent drug combinations; in

PDX studies, spectacular benefits appear to be achievable

from drug interaction. In the meantime, it is worth identifying

new combination or sequential regimens that optimally exploit

drug independence.
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METHOD DETAILS

Definitions of additive, synergistic, and independent drug effects
The terms ‘additive, ‘synergistic’, and ‘independent’ drug effects are used in research literature with different meanings, particularly

between pre-clinical and clinical settings. Before describing analysis and simulations of human trials, we begin with rigorous defini-

tions to protect the reader from any semantic misunderstanding.

In clinical oncology research the words ‘additive’ or ‘synergistic’ lack mathematical definition, and are not clearly distinguished

from one another (Eder et al., 2010), but refer to a drug combination effect that is significantly superior to the effect of the best con-

stituent monotherapy alone.

In pre-clinical oncology research, most commonly in cell culture basedmeasurements of drug response, drug combination effects

are described according to mathematical definitions. In these experimental contexts, the terms additive, synergistic, or antagonistic

‘drug interactions’ usually refer to pharmacodynamic interactions, not pharmacokinetic interactions. Berenbaum (1989) provides an

excellent review of pharmacodynamic drug synergy. To briefly summarize the two dominant models, ‘Bliss Independence’ deter-

mines that there is no drug interaction when two toxins confer statistically independent probabilities of cell death (thus, surviving frac-

tions are multiplied), and ‘Loewe Additivity’ determines that there is no interaction (or an ‘additive interaction’) when a two drug

mixture has potency equal to twice the dose of one drug (for example, half the IC50 of one drug plus half the IC50 of a second

drug is exactly the IC50 of the combination).

The model of drug independence presented in this article is at once more simple and more conservative than the ‘no-interaction’

models of either Bliss or Loewe: we hypothesize that the effect of two drugs in combination is only that of the one most effective

constituent drug. This definition of ‘independent drug action’ proposes neither additive effect nor even a small ‘sub-additive’

enhancement of effect. This is consistent with themeaning used by Frei et al. (1961), andwith the classification proposed byGaddum

(1940), which called any combined effect stronger than a single drug ‘synergism’, any effect weaker than a single drug ‘antagonism’,

and a combined effect exactly equal to the strongest single drug ‘independence’. In some contemporary literature thismodel is called

‘Highest Single Agent’. In this framework, effects consistent with either ‘Loewe Additivity’ or ‘Bliss Independence’ would cause two

drugs to be more effective than one drug, and would be called ‘synergistic’ by Gaddum.

Therefore, throughout the manuscript we refer to drug responses that are superior to independent drug action as ‘additive or syn-

ergistic’ (without drawing a distinction between the two), which is consistent with both Gaddum’s quantitative definition and with

contemporary usage of the words in clinical research.

Analysis of human clinical trials
Survival functions for clinical trial data were extracted from published Kaplan-Meier survival curves by image processing (the data are

not available in digital form). Survival data published in vector form was processed in Adobe Illustrator to remove censor marks and

dashing, and to separate trial arms to individual images. Survival data that were published only in a pixelated form were digitally

traced in Adobe Photoshop. After producing separate image files for each treatment condition, a high-resolution raster (at minimum

2000 pixels high) was processed by a custom script in Wolfram Mathematica which measured the number of pixels in each row
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between the time = 0 mark on the horizontal axis and the survival function. The number of pixels per row was calibrated against tick

marks on the time axis to convert to the duration of progression-free survival. It would obviously be preferable to start with the original

numerical data, but we are aware of no repository of such information.

In the case of Figure 4F, published bevacizumab response data does not show individual events because the published data was a

fitted curve (Giantonio et al., 2007); accurate event data for the other arms of this trial (E3200) was obtained from the European Med-

icines Agency review of bevacizumab.

We describe first the simulation of independent drug action in the case of uncorrelated responses. Each ofmany simulated patients

is assigned a response to each of two drugs, by sampling at random from the clinically observed probability distribution of progres-

sion free survival times on monotherapy. The two drugs are taken to have no additive or synergistic effect in any individual, and so

each patient’s PFS under the combination is whichever one of their two drug responses is the best. This process defines a response

distribution over the simulated population, of approximately 2000 to 10,000 patients depending on the resolution of the source clinical

trial images.

The case of partially correlated drug responses requires the construction of a joint distribution of PFS times with a defined level of

correlation. This is achieved by taking a rank-ordered lists of PFS times for each of two drugs (i.e., a perfectly correlated joint distri-

bution), and adding a level of random noise to the rank position (not the PFS content) of each entry. The amount of random noise in

position is increased until the two lists of PFS times reach the intended level of partial correlation, as calculated by Spearman’s rank

correlation coefficient r. The resulting partial correlations in response have the effect that resistance to one drug has an association

with resistance to the second drug; this effect ranges from no association at r = 0 to perfect association (complete cross-resistance)

at r = 1. The effects of combination therapy were simulated by assigning each patient a set of responses (one to each monotherapy)

from a single random sample of the joint distribution, and then defining PFS for combination therapy to equal the longer of the two

monotherapy PFS times. This processwas repeated for�2000 to 10,000 patients at each correlation. This process is illustrated step-

by-step in Figure S2. Full code for image analysis and simulation of combination responses is provided (Data S1).

Analysis of PDX trial data
Data on PDX animals were derived from published data (Gao et al., 2015) reporting the time to tumor volume doubling (hereafter PFS)

in 4,533 drug-treated PDX-bearing mice. The database contains information on 277 unique PDX tumors across six tumor types. An-

imals received one of 36 single-drug treatments or 25 combinations. Our analysis focuses on 230 PDX models that were subject to

testing in many different monotherapies (average 13) and combinations (average 5) (Figure S3B); the remaining 47 PDXmodels were

tested in limited selections of therapies. For each PDXwe calculated the following characteristics: average PFS for all single-agent or

combination therapies applied to that particular PDX tumor; the best PFS observed across all monotherapies (or all combinations)

applied to that particular PDX; and the hypothetical response to random pairs of monotherapies, calculated as the average over 104

iterations involving selecting a pair of drugs tested on that PDX, and assuming that PFS under the hypothetical combination would be

the longer of the two individual responses. Response rates were also calculated for all monotherapies, all combinations, and for

random pairs of monotherapies where a PDX was assumed to respond to the pair if it responded to either monotherapy (Figure 3B).

The expected effects of drug combinations under ‘independent drug action’ (in Figures 2C, 3E, 5B, and S4) is determined by as-

signing to each PDX its best experimentally observed response to either one of the single drugs that constitute the combination. Cor-

relations in response between different single drugs were computed by Spearman’s r rank correlation of PFS. In Figure 2A, analysis

of correlations between ‘all active agents’ refers to pairs of individually active monotherapies, defined by a hazard ratio for progres-

sion% 0.7 (Cox proportional hazardsmodel) when compared to untreated xenografts (each drug’s hazard ratio presented in Data S1,

PDX analysis code). Drug pairs of ‘same target or pathway’ were defined according to the following groups of mechanistically related

drugs: RAF, MEK, and MAPK inhibitors; or PIK3CA and pan-PI3K inhibitors; or FGFR kinase inhibitor and FGFR antibody-drug con-

jugate. Pairs of ‘chemotherapy and targeted therapy’ were drug pairs that contained at least one of the following chemotherapies:

dacarbazine, paclitaxel, gemcitabine, 5-FU, plus any other targeted agent. Full code with comments for all aspects of PDX trial anal-

ysis is provided (Data S1, PDX analysis code). We encourage readers to explore this information for themselves.

Application of Akaike Information Criterion to independent drug action
The model of independent drug action does not depend on the Akaike Information Criterion (AIC) for its validity, but AIC provides

additional support from the perspective of statistical model selection. The evidential justification for independent drug action, in brief,

is that clinically and experimentally observed levels of patient-to-patient variability in drug response and correlations in responsive-

ness between drugs provide a quantitatively sufficient explanation for clinically observed responses to a variety of combination ther-

apies (Figures 1 and 4). To explain the same clinical trials data by a model of synergy requires first making the assumption that the

drugs in a combination have nearly complete cross-resistance (as simulated in Figure 6E) in order to conclude that the benefit could

not arise from independent action. That assumption is factually inconsistent with clinical observations for all of the combination ther-

apies analyzed here with the exception of BRAF and MEK inhibitors for BRAF mutant metastatic melanoma. Nevertheless, it is

possible to construct models of drug synergy that are predicated on the hypothesis of complete cross-resistance between drugs,

in order to evaluate their quality of agreement with observed Progression Free Survival (PFS) distributions.
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For this purpose we defined three models of synergy:

1. Synergy by extension of response duration. This model fits one parameter to each trial of a drug combination, whereby the PFS

curve of monotherapy is horizontally re-scaled to fit the combination response. This describes a scenario where individual

patients have a proportionally longer duration of response to a combination versus monotherapy.

2. Synergy by increasing response rate. This model fits one parameter to each trial of a drug combination, which vertically

re-scales the PFS curve, uniformly compressing the probability of progression at each time point. This describes a scenario

where patients whose cancer does not respond to either individual drug has a chance of response to the combination of

the two drugs.

3. Two-parameter synergy. This model utilizes both of the parameters described in models 1 and 2, that is, fitting the observed

PFS curve by both horizontal and vertical re-scaling of the monotherapy PFS curve. This describes a scenario where combi-

nation therapies can both induce responses in a larger fraction of patients and confer more durable responses. This is not

necessarily ‘stronger’ synergy than models 1 and 2, because strength of effect depends on parameter value, but modeling

both mechanisms confers greater flexibility in fitting to observed PFS data.

These 3 models of synergy were fitted to observed PFS data, with different parameter choices permitted (indeed necessary) for

each of the five following combination therapies:

1. Metastatic melanoma, nivolumab plus ipilimumab (Figure 1)

2. Recurrent platinum-sensitive ovarian cancer, paclitaxel and carboplatin plus olaparib (Figure 4A)

3. HER2-positive metastatic breast cancer, chemotherapy and trastuzumab (Figure 4B)

4. Advanced pancreatic cancer, gemcitabine plus erlotinib (Figure 4C)

5. BRAF mutant metastatic melanoma, dabrafenib plus trametinib (Figure 4D).

Fits obtained under synergy models were compared with the predictions of independent drug action, which features a single

parameter, response correlation, which was not fitted to data but was based on the experimentally measured level of response cor-

relation in patient-derived tumor xenografts (PDXs) (Figure 2A) (Gao et al., 2015). The parameters in each synergymodel were fitted to

maximize the probability, according to the Kolmogorov-Smirnov (KS) goodness-of-fit test, that the data (clinically observed response

distribution to combination therapy) was drawn from the distribution described by the model. The likelihood function for each model

was the product of the optimal KS-test p values across five clinical trials. The likelihood for the independent drug action model was

also calculated by KS-test. These goodness-of-fit calculations showed that independent drug action has superior agreement to the

data, even though it involves no parameter fitting (Table S2, higher log likelihood). The Akaike Information Criterion evaluated good-

ness-of-fit in the context of a penalty against spurious parameter fitting, and determined that the independent drug action model has

many thousand-fold higher relative likelihood than any of the synergy models (Table S2).

The corrected AIC for finite sample sizes (AICc) could in principle be applied, recognizing that a clinical trial’s results can be sum-

marized in a single data point, the hazard ratio. This framework was in practice inapplicable because it would produce an infinite AICc

score for the synergymodels, indicating that synergymodels are useless, because theymust invoke at least one parameter to explain

each data point. In other words, irrespective of drug synergy being a valid biological phenomenon, it has no predictive accuracy as a

statistical model because different pairs of drugs can have different strengths of synergistic interaction.

Predicting combination effects from PDX trials
For each of the six tumor types in Gao et al. (2015), all possible pairs of themonotherapies tested in that tumor type were examined in

hypothetical combination. The survival function for each combination was calculated by assigning each PDX the longer of the two

observed PFS times for treatment of that particular PDX by the constituent monotherapies. For each hypothetical combination,

the hazard ratio was calculated (according to the Cox proportional hazards model) in comparison to the best observed monotherapy

for that tumor type. The best predicted combination for each tumor type (Figures 2B and 5B) was selected according to longest

average PFS. Full code for all aspects of PDX trial analysis is provided (Data S1).

First-principles model of heterogeneity in therapeutic sensitivity
Note that thismodel is not part of the analysis of human clinical trials (Figures 1 and 4) or PDX trials (Figures 2, 3, 5), and is relevant only

to Figure 6. To study drug response in silico, we modeled tumor kinetics according to Steel (1967) as involving both cell division and

cell loss (e.g., from apoptosis): f= 1� TDpot=TD, where TD is the observed macroscopic tumor doubling time, TDpot is a potential

tumor doubling time estimated from in vivo cell proliferation rates, and f is the cell loss factor (as a fraction of cell production)

that reconciles the comparatively fast TDpot and slow TD (note that f = 100% in tissues with no net growth). This model has the

advantage of simplicity, historical precedent and grounding in data from humans and animals (Steel, 1967; Tubiana, 1989) (see

comprehensive list of studies and data sources in Data S1, Figure 6 code). The Steel equation is also at the core ofmostmathematical

descriptions of tumor growth and response to therapy (e.g., the Coldman-Goldie model and Bozic et al. (2013)); it models changes in

the number of tumor cells (N) as: ðdN=dtÞ=g:N� f:g:N where g= ln2=TDpot is the cell growth rate. In the current study, growth rates

g for each tumor were sampled from a normal distribution (mean 0.069 day-1, standard deviation 0.021 day-1) producing amedian cell
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doubling time of 10 days with f taken as 80% (f typically ranges from 70% to 97% in human carcinomas (Tubiana, 1989); see

comprehensive list of studies in Data S1, Figure 6 code). This yields a median tumor volume doubling time of 50 days and a range

of 36 to 82 days (10% to 90% quantiles), values chosen for consistency with data on human solid tumors, for which median volume

doubling times range approximately from 40 to 100 days depending on tumor type (Steel, 1967; Tubiana, 1989). Figures S7A and S7B

show that results are robust to parameter variation and to alternative model structures, specifically modeling growth according to

Gompertz kinetics, and modeling cytotoxic therapies administered in cycles.

The effect of a drug I (at concentration [I]) that inhibits tumor growth is modeled as:

ðdN=dtÞ= ðg=1+ ½I�=KIÞ:N� f:g:N, where KI describes drug sensitivity. Drug treatment thereby reduces net growth rate, and when

drug sensitivity is high causes a ‘log-kill’ effect (exponential decay in population size of drug-sensitive tumor cells during drug treat-

ment). Patient-to-patient variability in drug sensitivity, KI, is introduced by drawing KI from a log-normal distribution with a standard

deviation of half-decade (inferred from human clinical trials; Figure S1). Note that in this equationKI takes the form of a binding affinity,

but this is not to propose that variation in binding affinity explains variation in drug response; it is a convenient device to reproduce the

observed phenomenon of variation in response. Note also that because [I] andKI have dimensions of concentration, [I] /KI is a dimen-

sionless ratio, and therefore the specific units of [I] and KI are not relevant. With the KI distribution centered on 1 (Figure 6B), [I] was

taken to equal 0.2 in order to produce approximately equal fractions of patients displaying tumor shrinkage or continued tumor

growth when evaluated at 8 weeks (Figure 6C). The effects of higher or lower [I] can be explored using the source code (Data S1).

In Figure 6G, the relative activity of the second drug was varied by adjusting its concentration [I] between 0.0 and 0.2. Figure 6 pre-

sents simulations of continuous drug treatment, but results held also for simulations of cyclical dosing and were also reproduced in a

model of Gompertzian growth dynamics as employed by the Norton-Simon hypothesis (Figure S7B).

Tumors receiving combination therapy were assigned two KI values, one for each drug, drawn either from two independent dis-

tributions or from a joint distribution with a specified degree of correlation (correlation in drug response is an important variable,

as illustrated in Figure 6G). For each drug, resistant subclones were modeled by assigning a 10-fold higher KI to 500 cells per million

(1 in 2,000) in the initial population, complemented in the case of combination therapy by 5 cells per million resistant to both drugs

(thus, a 1% frequency of cross-resistance). These frequencies are based on observed rates of pre-existing resistance to erlotinib and

crizotinib in a lung adenocarcinoma cell line (Bhang et al., 2015). When modeling the effect of variable degrees of positive correlation

in response, the frequency of cross-resistance increased in proportion to response correlation (starting from at least 1% as exper-

imentally reported (Bhang et al., 2015)). Thus, for example, at correlation = 0.1, cross resistance frequency was 10%, meaning 450

cells per million with resistance to drug A, 450 cells per million with resistance to drug B, and 50 cells per million with resistance to

both drugs. Under combination therapy, each cell subpopulation is assumed to be inhibited only by the therapy to which it is most

sensitive. In all cases, in silico tumors were considered to be progressing when the cell population doubled, corresponding to a 25%

increase in tumor diameter, similar to RECIST criteria. In Figure 6G, hazard ratios were calculated by Cox proportional hazardsmodel

with censoring of patients still progression-free by 3 years. Population sizes in simulations were 200 patients per arm in Figure 6E

and 6F, and 2500 patients per arm in each gridpoint in Figure 6G. Full code for these simulations is provided (Data S1).

DATA AND SOFTWARE AVAILABILITY

All analyses and data figures in the manuscript can be generated using source data and code provided in Data S1. Each piece of

source code is provided as a Mathematica Notebook (.nb filetype) accompanied by all source data required by the code, and a

PDF printout of the Mathematica Notebook containing all output illustrated in-line. The Mathematica Notebook can be executed

in Wolfram Mathematica version 11 by selecting ‘Evaluate Notebook’ within the ‘Evaluation’ menu. Data S1 contains an index

that lists the relation between each figure in the manuscript and each piece of source code.
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Supplemental Figures

Figure S1. Procedure for Randomly Sampling Monotherapy Responses, Related to Figures 1 and 4

For illustrative purposes, the procedure is here applied to a subset of 40 responses each to Ipilimumab, Nivolumab, and Ipilimumab plus Nivolumab in previously

untreated melanoma (Larkin et al., 2015). Here responses are assigned randomly (no correlation in response), but in the first step the simulated patients’ re-

sponses can instead be assigned with a positive correlation in response.

The same procedure applies to the simulation of progression free survival (Figures 1B and 4), taking the longest duration of progression free survival out of two

responses per patient.



Figure S2. Duration of Response to Individual Therapies is Widely Distributed, Related to Introduction and Figure 6

(A) Duration of progression free survival with trastuzumabmonotherapy as first-line treatment ofHER2AMPmetastatic breast cancer is approximately log-normally

distributed. Blue: Kaplan-Meier estimated time to progression in 79 patients FISH+ for HER2 gene amplification. Red: Fit to survival distribution by a log-normal

distribution (on log10 scale, mean = 0.71 and standard deviation = 0.56).

(B) Duration of progression free survival with vemurafenib as first-line treatment of unresectable stage IIIC or IVmelanomawithBRAF V600E or V600Kmutation is

approximately log-normally distributed. Blue: Kaplan-Meier estimated time to progression in 352 patients. Red: Fit to survival distribution by a log-normal

distribution (on log10 scale, mean = 0.82 and standard deviation = 0.40).

Source data and references are in Data S1.



Figure S3. Between-Tumor Heterogeneity in Drug Response in a Large Data of Drug Trials in Patient-Derived Tumor Xenografts, Related to

Figures 2 and 3

(A) Drug trials in Patient-Derived tumor Xenografts demonstrate strong tumor-to-tumor variability in optimal treatment. For each of the 6 tumor types in Gao et al.

(2015) we determined the observed treatment that produced the best average progression free survival across all PDXs of that tumor type (Melanoma: LEE011 +

binimetinib; Non-small-cell lung cancer: BKM120 + binimetinib combination; Pancreatic ductal adenocarcinoma: BKM120 + binimetinib combination; Colorectal

carcinoma: BYL719 + binimetinib; Breast cancer: LEE011 + everolimus combination; Gastric cancer: BYL719monotherapy). Next, for each PDXwe determined if

any treatment other than the ‘best overall’ for that tumor type produced an individually superior response. Each of 230 PDX tumors is represented in this plot with

progression free survival (PFS) with the best overall therapy on the horizontal axis and the possible improvement in PFS with some other personalized therapy on

the vertical axis. We find that for 51% of PDXs, personalized therapy can improve PFS by at least 4 weeks (gray horizontal line).

(B) Treatment matrix of 230 PDX models from 6 tumor types, each tested by Gao et al. (2015) for responsiveness to multiple monotherapies (average of 13 per

PDX) and combination therapies (average of 5 per PDX). Each dot indicates a particular PDX tested with a particular treatment (green, monotherapies; blue,

combinations). A larger rendering with labels for each drug treatment and each PDX model is provided in Data S1 (PDX analysis code); the larger matrix also

demonstrates 47 PDXmodels that have been excluded from analyses in this article because they were tested in very few therapies and are therefore unsuited for

comparing multiple treatments in the same PDX.



Figure S4. Drug Combinations Tested in Patient-Derived Tumor Xenografts Are Consistent with Independent Drug Action, with Some Cases

of Synergy, Related to Figure 3

(A) Assuming independent drug action, random pairs of monotherapies produce a statistically significant improvement in response rate. In the PDX drug trials of

Gao et al. (2015), response rates (frequency of stable disease, partial, or complete response) within a tumor type for monotherapy (light green) is inferior to

response rate for combinations (blue) (Kolmogorov-Smirnov (KS) test, p < 10�5, n = 85 monotherapy treatments of a tumor-type; 33 combination treatments of a

tumor-type). In each tumor type we selected random pairs of the tested monotherapies, and assumed independent drug action, such that each PDX responds to

a hypothetical combination only if it responds to one of the constituent drugs. The response rate in random pairs of monotherapies was not significantly different

from the observed response rate with combinations (KS test, p = 0.39, n = 33 observed combination treatments; 3300 random pairs of monotherapies), but

significantly superior to observed monotherapies (KS test, p < 10�13). Historical data on animal-to-animal reproducibility in RECIST response was reported by

(legend continued on next page)



Gao et al., being a table of how often the consensus response (PD = progressive disease, SD = stable disease, PR = partial response, CR = complete response) in

a treatment model (a specific treatment of a specific PDX) was measured in replicate mice as a different response (see Gao et al. [2015]; Figure 2A). We used this

data to create an error model for the effects of animal-to-animal variability, by replacing each observed response in monotherapy treatments of each PDX cohort

with a response according to this table of probabilities. When each PDX’s response to a monotherapy is replaced with the best of two responses drawn from this

error model (as when simulating the effects of random pairs of monotherapies), the resulting response rate (dark green) is not significantly different from the

observed response to monotherapies (KS test, p = 0.13, n = 85 monotherapy treatments).

(B) Only in melanoma PDXs were experimentally tested combination therapies superior to random pairs of monotherapies. Analyzing PDXs from all tumors types

studied by Gao et al. (2015), combinations are trending toward superiority over randomly selected pairs of monotherapies under the assumption of independent

drug action (hazard ratio of observed combinations versus random pairs of monotherapies 0.84; 95% C.I. 0.69 to 1.00; p = 0.06; n = 230). Analyzing individual

tumor types, only in melanoma are combinations significantly superior (hazard ratio versus random pairs of monotherapies 0.30; 95% C.I. 0.18 to 0.52; p < 10�4;

n = 42); this is consistent with evidence of synergy in the drug combinations tested in melanoma (D). Analyzing PDXs from all tumor types other than melanoma,

there is no trend in favor of combinations (hazard ratio versus random pairs of monotherapies 1.13; 95% C.I. 0.93 to 1.39; p = 0.21; n = 197).

(C) The best achievable responses with monotherapies and with combinations are equivalent, except for synergy in melanomas. Figure 3C compared PFS

produced by treating each PDX studied by Gao et al. (2015) with its (retrospectively chosen) optimal monotherapy or optimal combination therapy, and showed

that they produced virtually identical benefits. A potential limitation of this data is that some drugs were only tested asmonotherapies and never in a combination,

and some drugs were only tested as part of a combination and never as a monotherapy. Top (all tumors): Here this analysis is repeated considering only those

therapies that were tested both as a monotherapy and as a component of a combination on the same tumor type; this yields 42 monotherapy trials and 24

combination trials. Across all tumor types, optimally chosen combinations trend toward superiority over monotherapies (hazard ratio 0.84; 95%C.I. 0.70 to 1.01;

p = 0.07; n = 230). This trend is exclusively driven bymelanoma where combinations were identified that strongly surpassed the effect of independent drug action

(D). Bottom (all tumors except melanoma): In all tumor types other than melanoma, optimally chosen combinations lack any superiority over optimally chosen

monotherapies (hazard ratio 1.08; 95% C.I. 0.89 to 1.33; p = 0.42; n = 197).

(D) Independent drug action provides a reference for the identification of synergy in survival data. Synergistic drug combinations are defined in cell culture studies

by having effects greater than the sum of their parts (commonly according to Loewe’s isobologram analysis, Chou and Talalay, or Bliss (Berenbaum, 1989)).

However, a definition of ‘sum of parts’ has not been apparent for clinical trial data (summing months of survival would be absurd). Here our model of independent

drug action defines a ‘null-hypothesis’ of no interaction to identify drug combinations producing genuinely enhanced potency. Of 33 tests of drug combinations

on panels of PDXs by Gao et al. (2015) (25 unique combinations of which some were tested on multiple tumor types), four were identified with a statistically

significant reduction in hazard ratio relative to the prediction of independent action; and a further two combinations trending to improvement butwithout statistical

significance (computed by Cox proportional hazardsmodel; ns denotes not significant, p > 0.05; * denotes p% 0.05; ** denotes p% 0.005). In some cases a large

benefit is entirely attributable to a synergistic effect (e.g., ribociclib plus binimetinib for melanoma), and in other cases the benefit of a combinationmay be partially

due to synergy and partially due to the independent drug action in the context of heterogeneous responses across a population (e.g., alpelisib plus binimetinib for

colorectal carcinoma).

Hazard ratios: For pancreatic ductal adenocarcinoma, buparlisib plus binimetinib produce hazard ratio (relative to independent drug action) 0.61 (95% confi-

dence interval 0.37 to 1.00), p = 0.05. For colorectal carcinoma, alpelisib plus binimetinib produce hazard ratio (relative to independent drug action) 0.80 (0.51 to

1.23), p = 0.3); and hazard ratio (relative to the best monotherapy, binimetinib) 0.59 (0.38 to 0.92), p = 0.02. For melanoma, ribociclib plus encorafenib produce

hazard ratio (relative to independent drug action) 0.46 (0.28 to 0.76), p = 0.003. Ribociclib plus binimetinib produce hazard ratio (relative to independent drug

action) 0.47 (0.25 to 0.96), p = 0.003. Buparlisib plus encorafenib produce hazard ratio (relative to independent drug action) 0.45 (0.26 to 0.77), p = 0.004. In BRAF-

V600 mutant melanoma, Encorafenib plus binimetinib produce hazard ratio (relative to independent drug action) 0.29 (0.12 to 0.72), p = 0.007, and hazard ratio

(relative to the best monotherapy, binimetinib) 0.22 (0.08 to 0.58), p = 0.002. The benefit of encorafenib plus binimetinib is not statistically significant compared to

monotherapy when evaluated in all melanoma PDXs.



Figure S5. Independent Drug Action and Partially Correlated Responses Explain the Efficacy of Many Combination Therapies, with Synergy

Identifiable when the Observed Efficacy is Superior to the Prediction of Independence, Related to Figure 4

(A) In clinical trials of combination therapies consistent with independent drug action, progression free survival is best explained by partially correlated drug

responses In Figures 1B and 4A–4G, progression free survival (PFS) predicted by independent drug action was plotted for response correlations in the range

r = 0.28 ± 0.20. Here, simulations were conducted over the range 0% r% 1, showing the median PFS predicted in each simulation. Each individual simulation is

a gray dot, with a black line fitted to show the trend (using a linear plus sigmoidal response function). The clinically observed median PFS with the best

monotherapy, and with the combination therapy, are shown for reference as dotted horizontal lines (monotherapy in green; combination in blue). Most com-

binations are best explained by partial positive correlations, except the combination of bevacizumab plus chemotherapy (two cases: ovarian and colorectal) and

5-fluorouracil plus oxaliplatin (pancreatic cancer) which cannot be explained by independent action even with fully uncorrelated responses. This is evidence of

additivity or synergy.

(B) In low-grade oligodendroglioma, radiation plus chemotherapy appears to have benefits surpassing independent action. As in Figure 4, survival distributions

under combination treatment were simulated assuming drug independence by sampling observed monotherapy responses; in this case with r = 0.0 and 0.5,

which gives the two black curves with the range in between in gray. This is speculative because of a lack of data on response correlation between radiation and

chemotherapy, but the observed effect clearly surpasses the upper bound of simulation at r = 0, which is the greatest possible benefit that could attributed to

independent action. Data are from a phase 3 trial of low-grade glioma treated with radiation with or without chemotherapy (PCV: procarbazine, lomustine/CCNU,

vincristine), taking only data for grade 2 oligodendroglioma; and chemotherapy-only data from a study of large low-grade oligodendroglial tumors treated with

PCV chemotherapy only (with intended goal of delaying radiation). It is possible that the chemotherapy-only trial’s selection of patients with large oligoden-

droglioma introduces bias for worse outcomes than for patients in the trial of radiation with or without chemotherapy, whichmay invalidate the use of this analysis

in this specific case. Source data and references are in Data S1.



Figure S6. The Benefit of Predicted Combinations Is Robust to Animal-to-Animal Variability in Response, Related to Figure 5

We used Gao et al.’s reported data on animal-to-animal reproducibility in RECIST response criteria (see Figure 2A and Gao et al. [2015]) to derive an error model,

by replacing each observed drug response with a response according to the observed probabilities that an individual animal’s response might differ from the

consensus of replicates of that treatment model (meaning a test of a particular drug on a particular PDX) (see also Figure S5). For each monotherapy in these

predicted combinations we conducted 105 iterations of replacing each PDX’s observed response with the best of two responses drawn from this error model, and

then calculated the response rate (any response better than progressive disease) across the PDX cohort. Here we plot histograms of response rate according to

the error model of animal-to-animal variability. Solid vertical lines show the experimentally observed response rate with each monotherapy (green or magenta)

and the response rate predicted with independent drug action in combination (black). For all predictions the response rate (SD, PR or CR) with independent action

has p < 0.05 to be explained by animal-to-animal variability. For pancreatic ductal adenocarcinoma, the predicted combination was significant at this evaluation

of ‘any response’ (p = 0.006) but because binimetinib alone produces initially stable disease (SD) in nearly all PDX tumors, this is based on a small effect size and

so we sought to make a more robust evaluation. We therefore repeated this analysis at a more stringent level of response (partial (PR) or complete (CR); thus not

counting stable disease) and observed that the predicted benefit remained statistically significant: animal-to-animal variability has a 1% probability by this error

model to explain the predicted superiority of combining binimetinib and gemcitabine compared to either monotherapy.



Figure S7. Robust Benefit of Independent Drug Action in Simulations of Patient Heterogeneity in Clinical Trials, Related to Figure 6

A. The benefit of independent drug action in a combination is robust to tumor kinetic parameters and the level of subclonal drug resistance.

Tumor kinetics: The benefit of independent drug action in a combination (blue) compared to monotherapy (green) holds over the range of tumor kinetic pa-

rameters relevant to human carcinomas, being cell loss factors between 50% and 95%, and tumor volume doubling times from 40 to 100 days (Steel, 1967;

Tubiana, 1989); see Data S1 (Figure 6 model) for comprehensive list of references on tumor kinetics.

Drug resistant clones: The benefit of independent drug action is robust to variation in the strength of drug resistance (that is, the fold-change in drug sensitivity

parameter KI in pre-existing resistant subclones), and the pre-treatment frequency of drug resistant subclones in a tumor. The benefit of independent drug action

remains, but is slightly diminished, when there is strong sub-clonal cross-resistance between the two drugs. At 100% cross-resistance the pre-existing resis-

tance is fully overlapping: all resistant subclones have 103 higher KI for drug 1 and 103 higher KI for drug 2. Resistance parameters used in main text (Figure 6)

were 10 3 resistance, at 1/2000 initial frequency, with 1% cross-resistance, based on the experiments of Bhang et al. (2015).

B. Independent drug action is also beneficial in a model with Gompertz growth kinetics, and in a model of cytotoxic chemotherapy administered in cycles.

Model with Gompertz kinetics: The model presented in Figure 6 is here altered to describe tumor growth according to Gompertz kinetics (as used in the Norton-

Simon hypothesis) in which the population’s growth rate is a decreasing function of population size: growth rate approaches zero as population size approaches a

carrying capacity; and growth rate increases in the event of a drug response that decreases population size. Left panel and right panel correspond to Figures 6D

and 6E in the main text. In this model, Gompertzian growth dynamics have only marginal differences from exponential growth dynamics because we are

simulating time to tumor volume doubling, and over this 2-fold range in population size there is little difference between exponential, logistic, Gompertzian, or

even linear growth dynamics. Only in tumors with strong tumor shrinkage in response to drug is there a notable difference with Gompertzian dynamics, wherein

the small drug-surviving population can regrow more rapidly. This does not alter the result that independent drug action by a combination therapy is sufficient to

improve PFS.

(legend continued on next page)



Model of cycles of cytotoxic therapy: Themodel presented in Figure 6 described response to a continuously administered growth inhibiting there. Here themodel

is altered to instead describe a periodically administered cytotoxic therapy, with drug present for 3 days in every 30 days. Treatment with inhibitor at dose [I]

changes growth from g to g3 (1-[I]/KI), which is negative when [I]>KI, reflecting a cytotoxic effect. To produce similar duration of progression free survival as the

model of growth-inhibiting therapy (Figure 6), the administered dosewas higher ([I] = 1.5 instead of 0.2 as used in Figure 6 and theGompertz model above). In both

alternative models, independent drug action in a combination therapy remains sufficient to produce a substantial improvement in PFS.

C. Synergy and independent drug action can jointly contribute to improved survival duration.

Top panel: Independent drug action in a combination is weaker when responsiveness to the 2 drugs is highly correlated across a population (in effect, not very

independent) (Figures 6F and 6G). However, a drug combination that displays this partially-independent action together with a sub-additive interaction (the two

drugs together behave as one at 1.4 3 higher dose) produces a survival benefit (black) similar to a much stronger level of synergy (red).

Bottom panel: The benefits of independent drug action and synergy can in principle be combined in a three drug combination (two synergistic together, plus one

independent) to produce yet greater survival benefits (black).
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