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Traditional means for scoring the effects of anti-cancer drugs on the growth and survival of cell lines is
based on relative cell number in drug-treated and control samples and is seriously confounded by unequal
division rates arising from natural biological variation and differences in culture conditions. This problem
can be overcome by computing drug sensitivity on a per-division basis. The normalized growth rate
inhibition (GR) approach yields per-division metrics for drug potency (GR50) and efficacy (GRmax) that are
analogous to the more familiar IC50 and Emax values. In this work, we report GR-based, proliferation-
corrected, drug sensitivity metrics for ~4,700 pairs of breast cancer cell lines and perturbagens. Such data
are broadly useful in understanding the molecular basis of therapeutic response and resistance. Here, we
use them to investigate the relationship between different measures of drug sensitivity and conclude that
drug potency and efficacy exhibit high variation that is only weakly correlated. To facilitate further use of
these data, computed GR curves and metrics can be browsed interactively at http://www.GRbrowser.org/.
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Background & Summary
The prioritization of compounds for lead discovery, identification of pharmacogenomic associations, and
study of cellular machinery requires reproducible and accurate data on drug response in cultured cell
lines. In the case of anti-cancer drugs, which act by slowing cell proliferation or increasing the rate of cell
death, the traditional approach is to expose cells to a drug over a range of concentrations, measure the
number of cells at the end of a fixed period of time (typically 3 days) and then compare that number to
the number of cells in a vehicle-only control. The ratios are usually fitted to a sigmoidal curve from which
it is possible to compute IC50, the drug concentration at which cell count is half the control value, which
is a traditional measure of potency, and Emax, the maximum effect at the highest concentration tested,
which is a measure of efficacy. Although in use for many decades, this calculation is sensitive to the
number of cell divisions taking place over the course of the assay, which differ when cell division rates
vary. As a consequence, it is possible for IC50 values for a single drug in a single cell line to vary 100-fold
or more simply as a consequence of exogenously imposed changes in the rate of division1,2. Natural cell
division rates vary from one cell line to the next, often in a systematic manner depending on tissue of
origin2,3, media composition, culture conditions, and plating density1. Because division rate is a powerful
confounder in the calculation of IC50 and Emax values, and because it is often poorly controlled, we
speculate that it is a contributor to the observed irreproducibility of drug dose-response data2–5.

The normalized growth rate inhibition (GR) method recently introduced by Hafner et al.1,2 corrects
for variation in division rates by estimating the magnitude of drug response on a per-division basis. The
GR value in the presence of drug at concentration c is GR(c)= 2k(c)/k(0)− 1 where k(c) is the growth rate of
drug-treated cells and k(0) is the growth rate of untreated control cells. Growth rates can be estimated
using time course data or, as in this paper, the number of cells prior to and at a fixed time after the
addition of drug. Metrics of drug potency, GR50, and efficacy, GRmax, can then be calculated from the
dose-response curve. The sign of the GR value is related directly to response phenotype: negative values
reflect cytotoxicity, a value of 0 corresponds to complete cystostasis, and positive values reflect partial
growth inhibition. GR calculations are described in detail at http://www.GRbrowser.org/, and a detailed
method for performing the calculations with web-based software and an R pipeline is also available6,7.

The datasets presented here make use of drug dose-response data that have been described
previously8,9 as well as substantial new data and comprise, after filtering low-quality data points, GR-
based dose-response data for 71 breast cancer cell lines from all three major subtypes of breast cancer
(HER2 amplified, hormone receptor positive, and triple negative) and 107 perturbagens (104 small
molecule drugs and 3 therapeutic antibodies). We found that low growth was a good criterion for filtering
out data with high relative error, as judged by standard error of the mean (SEM) for GR values,
presumably because: (a) a very low division rate (fewer than one division per 72 h) is an indicator that the
experimental setup is not optimized for the growth of a particular cell line; (b) fixed error in Cell Titer-
Glo (CTG) assays makes measurement of smaller differences in cell number between control and
experimental samples unreliable; and (c) partial cell cycle synchronization introduced during plating of
cells with division times longer than the assay duration violates the assumption in GR calculations that
growth is homogenous and constant10. As a quality control filter, we therefore eliminated from further
consideration all samples in which the vehicle-only controls underwent too few divisions. Despite the
need to filter out some data, the 4,700 unique cell line/perturbagen pairs described in this paper represent
one of the largest collections of growth-corrected drug-response measurements currently available.

Methods
Cell culture and treatment
The original dataset [DS0, Data Citation 1] comprised the effects of 139 perturbagens (small molecules
and therapeutic antibodies) on 73 breast cancer cell lines, some in multiple cell growth conditions,
determined by plating cells at a density such that they remained in logarithmic growth during the assay11.
This required adjusting passage and plating conditions for each line.

Cells were allowed to attach overnight onto 96-well plates before being treated in technical triplicate
for 72 h with nine doses of each perturbagen in a 1:5 serial dilution. The concentration range was
optimized on six cell lines, and, for most cell line/perturbagen pairs, the highest concentration tested fell
between 33 μM and 167 μM.

Cell count
Cell count was estimated using the Cell Titer-Glo (CTG) Luminescent Cell Viability Assay (Promega)
after three days in drug (the endpoint of the assay). Cell count was also measured in untreated plates at
the time of treatment. The raw CTG assay readout values were considered proportional to the number of
viable cells and used as surrogates for cell count values, which is a widely used assumption with some
caveats12. A background CTG value was obtained from wells containing culture medium but no cells
(values between 35 and 250). Dataset DS0 [Data Citation 1] comprises all raw CTG values.

Cell count normalization and GR values
Dataset DS1 [Data Citation 2] comprises data for the 107 perturbagens (104 small molecules and 3
therapeutic antibodies) and 71 cell lines that could be unambiguously identified (i.e. could be
unequivocally matched to records in public databases such as PubChem or ATCC), representing 87% of
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the original dataset selected for further analysis (see Data Records). First, background CTG value was
subtracted from the raw CTG values (which fell between 20 and 10,000) in drug-treated wells.
Background-corrected values below 1 or negative, which represented o0.1% of the data, were set to 1 to
eliminate artefacts from near-background CTG values. Then, we calculated the following values:

– x(c), a robust average of three technical replicates for the background-subtracted CTG value
following drug treatment at concentration c; x(c)=mean({xi∈ x | abs(log10(xi)–log10(mean(x)))
o1}) where x is the vector of treated values.

– xctrl, the robust average background-subtracted CTG value in DMSO-treated control wells from the
same plate; xctrl=mean({xi∈ x | abs(log10(xi)–log10(mean(x)))o1.5)}) where x are all DMSO-
treated control values.

– x0, the background-subtracted median value from the untreated samples (one per cell line and
biological replicate) measured at the time of treatment.

Dataset DS1 [Data Citation 2] comprises the GR value for each treated condition calculated as follows1:

GR cð Þ ¼ 2
log 2 xðcÞ=x0ð Þ
log 2 xctrl=x0ð Þ - 1

Dose-response curves and GR metrics
GR values for a specific drug across multiple concentrations were fitted to a sigmoid curve with the

equation GR cð Þ ¼ GRinf þ 1 -GRinfð ÞUGEChGR
50

GEC
hGR
50 þchGR

using the MATLAB fitting function. More details about the

procedure can be found in Hafner et al.6. Given the data points and fitted equation, we extracted
the response parameters:

● GR50: the primary metric of drug potency; the concentration of drug c at which GR(c)= 0.5. If the
value for GRinf (see below) is above 0.5, GR50 cannot be defined and we set its value to +∞. If GRinf is
below 0.5 but the inferred GR50 value is half an order of magnitude (3.16-fold) above the highest
tested concentration, we set the GR50 value to +∞ to avoid artefacts due to extrapolation (this
affected 0.6% of conditions). In plots of GR50 values, GR50 values were capped at 100 μM for
visualization purposes.

● GRmax: the primary metric of drug efficacy; the GR value at the highest tested dose of the drug.
GRmax lies between –1 and 1; negative values correspond to a cytotoxic response (i.e. cell death), a
value of 0 corresponds to a fully cytostatic response (no increase or decrease in cell number), and
positive values less than one correspond to partial growth inhibition. GRmax can only be compared
across drugs or cell lines when the highest tested doses are the same.

● GRAOC: the integrated effect of the drug across a range of concentrations as estimated from the ‘area
over the curve’. A value of 0 means no effect of the drug across the full dose-response range. GRAOC
can only be compared across drugs or cell lines when the dose range is the same.

● GRinf: a measure of drug efficacy extrapolated to an infinitely high drug concentration as determined
from the asymptote of the dose-response curve; GRinf �GRðc-1Þ. For dose-response curves that
reach a plateau under experimental conditions, the value of GRinf is similar to GRmax.

● hGR: the Hill coefficient of the fitted curve; it reflects the steepness of the dose-response curve. We
constrained its value between 0.1 and 5.

● GEC50: an analogy to EC50 corresponding to the concentration of drug at half-maximal effect. GEC50

is relevant for drugs that have poor potency and that do not reach a GR value below 0.5. In the fitting
procedure, GEC50 is constrained to lie within two orders of magnitude of the highest and lowest
tested drug concentrations.

We excluded from further consideration cell line/perturbagen pairs in which fewer than 0.3 cell
divisions (a 23% increase in cell number) were recorded for the no-treatment control over the course of a
3-day assay (this affected 8.5% of the data, the majority of which were associated with 6 specific cell lines).
This was done because GR values quantify the effects of drugs on cell growth. If untreated control
cultures are not growing, the response to drug is generally weak, and GR values become highly variable
and biologically meaningless. In principle, it is possible to quantify the effects of highly cytotoxic drugs
under these conditions using traditional Emax values, but fewer than 1% of the responses in the overall
dataset were sufficiently cytotoxic that Emax values would not have been biased by the low division rate.
Following filtering, we obtained 4,788 unique cell line/perturbagen pairs, the majority of which were
recorded in biological duplicate for a total of 8,882 cell line/perturbagen pairs, each tested at nine doses in
technical triplicate. Before averaging biological replicates when available, we further filtered the data to
exclude measurements for which division time was greater than 80 h (corresponding to 0.9 division over
the course of a 72 h assay). We included this cutoff based on preliminary data showing that GR values
obtained from slow-growing cell lines had high uncertainty (see Technical Validation section below). The
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final dataset comprised 4,650 cell line/perturbagen pairs corresponding to a median of 88 perturbagens
per cell line [DS2, Data Citation 2].

Code availability
GR calculation, curve fitting, and extraction of metrics was performed using scripts published in Hafner
et al.1,6 and found on the GitHub repo at https://github.com/datarail/gr_metrics. Other analysis was
performed using MATLAB standard functions.

Data Records
This manuscript describes 4 new datasets (DS1, DS2, DS3, DS4) that are publically available as a single
data package in the Dryad Digital Repository (Data Citation 2) alongside a fifth file bundle (DS0)
consisting of the reference files used to process the file containing the raw dose-response data described in
Heiser et al.8 and Daemen et al.9 and additional data generated subsequently (Data Citation 1). DS1
reports relative cell counts estimated from the available CTG values as well as computed GR values and
nominal division rates for all cell line/perturbagen pairs from the raw dataset for which the cell line and
perturbagen reagents used could be unambiguously identified (representing 87% of the original dataset,
DS0) and for which the cell line demonstrated sufficient growth over the course of the assay to exceed our
cutoffs (see Methods). DS2 reports the calculated GR metrics for the same set of cell line/perturbagen
pairs. DS3 and DS4 report the median, upper quartile, and lower quartile GR metrics per perturbagen and
per perturbagen class, respectively, across all cell lines in DS2. DS0 consists of a downloadable zip file
containing multiple reference files necessary for annotating the raw data file with reagent identifiers and
perturbagen concentration details, reference file metadata in the form of data column lookup tables
(LUTs), experimental metadata including a detailed protocol, and a ReadMe file. DS1, DS2, and DS3 each
consist of a downloadable zip file containing a data file, data file metadata in the form of a data column
LUT, experimental metadata including a detailed protocol and reagent metadata tables, and a ReadMe
file. DS4 consists of a downloadable zip file containing a data file, data file metadata in the form of a data
column LUT, experimental metadata including a detailed protocol, and a ReadMe file. All files are
provided in their original format and, where relevant, also in a non-proprietary, preservation-friendly
format (e.g. .csv, .txt). All dose-response curves and metrics corresponding to DS2 also are available for
interactive viewing at http://www.GRbrowser.org.

Figure 1. Data quality as a function of the cutoff in the number of cell divisions observed in parallel

untreated cultures. Each plot shows the median, 75th-, 90th-, 95th- and 99th-percentiles for SEM of the GR

values (top left), goodness of the sigmoidal fit (top right), GEC50 values (bottom left), and GR50 values

(bottom right).
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Technical Validation
The GR method used to perform calculations in this paper has previously been described1, and the code
has been validated on multiple datasets. Use and installation instructions, as well as bug fixes, are
available at our GitHub repo (https://github.com/datarail/gr_metrics). Methods for plating cells, adding
drugs, and performing CTG assays have also been described in Heiser et al.8 and elsewhere. We have
recently published an in-depth protocol10 for performing drug dose-response experiments in cell lines
that includes advances in methodology not available at the time the current data were collected. We
recommend that future studies follow these more recent guidelines.

One of the key biological premises implicit in computing GR metrics is that cells in untreated wells
are proliferating in a uniform, exponential, and continuous manner. In principle, this should be true
for all established cell lines, but in a large-scale drug-response experiment it is inevitable that some
variability will be encountered. For this reason, we discarded any plate in which control cells underwent
fewer than 0.3 cell divisions. When we examined cell line/perturbagen pairs in which cells had undergone
more than 0.9 divisions in the absence of drug, we observed a substantially lower standard error of
the mean (SEM; Fig. 1). The 95th-percentile SEM was 0.35 for all cell line pairs tested and dropped
to ~0.30 when we removed the 27% of the conditions that represent the slowest growing conditions
(fewer than 0.9 divisions). We suspect that this arises because ratios between x(c), xctrl, and x0 are
more sensitive to fixed measurement noise in the case of slow growing cultures. Low division number
can arise because some cells are inherently slow growing, but sporadic examples of slow growth are
more likely to reflect defects in the plate, excess evaporation of the medium, or pipetting error.
Regardless, eliminating data for these slow growing conditions improved the SEM of the GR values and
metrics.

The SEM of the GR values was below 0.1 for 75% of the data in dataset DS1, but 10% of the conditions
in DS1 remained substantially variable across replicates (SEM > 0.2). Among the GR values with SEM >

Figure 2. Relationship between efficacy (GRmax values) and potency (GR50 values). (a) Distribution of the

GR50 values (x-axis) versus GRmax values (y-axis) by drug for all analyzed cell lines (averaged across biological

replicates). (b,c) Distribution of the cell line/perturbagen pairs by drug class based on the response classes

defined by efficacy (positive or negative GRmax value) and potency (GR50 value below or above 1 μM) for all cell

lines (b) or separated by clinical subtype (c).
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0.2, we observed little bias by cell line. We therefore concluded that the data were impacted primarily by
sporadic rather than systematic error (see Methods). With respect to estimation of drug potency, the SEM
for GR50 across all perturbagens and cell lines was low (SEM below half an order of magnitude in drug
concentration for 95% of the cell line/perturbagen pairs), but this estimate is biased by the many cases in
which cells are resistant for which GR50 is set at infinity. For the subset of cell line/perturbagen pairs in
which a substantial biological response is observed (GR50 o10 μM), 77% of the data have SEM values

Figure 3. Distribution of the GR metrics by drug for all analyzed cell lines (averaged across biological

replicates). (a) GR50 values. (b) GRmax values. (c) GRAOC. (d) Hill coefficient (hGR).
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below half an order of magnitude. This is consistent with the GEC50 values, whose SEM is below an order
of magnitude for 75% of the cell line/perturbagen pairs. Overall, the sigmoidal fit was good (r2>0.75) for
90% of the cell line/perturbagen pairs that show a substantial biological response (GRmaxo0.5). Taken
together, these results show that, for this dataset, differences in GR value above 0.2 or in GR50 values
above half an order of magnitude should reflect substantial differences in sensitivity.

Usage Notes
Uses of our data include identifying cell lines or subtypes that are particularly sensitive or resistant to a
class of drugs (or the converse) for follow-up investigation. Using GR metrics for systematic
pharmacogenomics studies has two advantages relative to standard approaches2: (1) it ensures that
enrichment analysis is not biased by differences in division rate, and (2) it makes it possible to distinguish
genes associated with drug-induced cytotoxicity (negative GRmax values) from cytostasis (GRmax values
between 0 and 1). In the current study, we first compared potency, as measured by GR50 values, and
efficacy, as measured by GRmax values, by drug class across cell lines (see Table 1 (available online only)
for annotations; Fig. 2 and DS3 [Data Citation 2]). This showed that drugs targeting tubulin and the
proteasome are among the most potent (low GR50), whereas HDAC inhibitors and DNA cross-linkers
have the highest efficacy (low GRmax). Many drugs induced a cytotoxic response at the highest
concentrations (negative GRmax values), but most MAPK inhibitors and the majority of the ErbB, PI3K,
and RTK inhibitors had positive GRmax values, showing that such drugs are partially cytostatic in most
breast cancer cell lines. When results were sorted by clinical subtype, we found, for example, that tubulin-
binding drugs were generally less efficacious in non-malignant (NM) and hormone-receptor-positive cell
lines (HR+) than in HER2-amplified (HER2amp) and triple-negative (TNBC) cells; such drugs are used
most widely in the treatment of TNBC.

Contemporary analysis of tool compounds and therapeutic drugs focuses almost entirely on
comparing differences in drug potency, with relatively little attention paid to efficacy as measured by
maximum drug effect. We have previously shown, however, that both IC50 and Emax values for the Heiser

Figure 4. Distribution of the GR metrics by drug class for all analyzed cell line/perturbagen pairs

(averaged across biological replicates). (a) GR50 values. (b) GRmax values. (c) GRAOC. (d) Hill coefficient (hGR).

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170166 | DOI: 10.1038/sdata.2017.166 7



et al.8 dataset are highly variable across drugs and cell lines13. When we repeated this analysis using the
expanded dataset and GR-based drug metrics described in this work, we came to the same conclusion,
namely that values for GR50, GRmax, GRAOC, and hGR are variable across cell lines and drugs (Fig. 3). For
some drugs, predominantly MAPK and ErbB inhibitors, GR50 and GRmax values were correlated, but
further analysis showed that this arose simply because a few cell lines were drug sensitive whereas the
majority were resistant. When we examined the subset of cell line/perturbagen pairs that resulted in
cytotoxicity (GRmaxo0), we observed no correlation between GR50 and GRmax (Spearman’s p > 0.05).

Aggregating drugs by class (based on nominal targets–see Table 1 ((available online only) for these
annotations; Fig. 4 and DS4 [Data Citation 2]) also revealed systematic variation in efficacy, potency, and
Hill coefficient by drug class. For example, GR50 values for tubulin-binding drugs are very similar across
cell lines; variation in response primarily involves GRmax values, many of which are negative (Figs 3a,b and
4a,b). mTOR and PI3K inhibitors as a class have very shallow dose-response curves characterized by low
Hill coefficients (hGR; Figs 3d and 4d) and positive GRmax values, reflecting partial growth inhibition. Area
over the dose-response curve (GRAOC; Figs 3c and 4c) can also be used to assess drug potency and efficacy
in a single metric, but we have shown that GRAOC values have lower information content than GR50 and
GRmax values taken jointly2 because the latter two are biologically different. We therefore propose that
future studies of cellular factors, genetic changes, and epigenomic variants controlling the responsiveness
of cells to anti-cancer drugs consider associations with GR50, GRmax, and hGR independently.
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