Lyapunov Exponents and Phase Diagrams Reveal Multi-Factorial Control over Trail-Induced Apoptosis

Aldridge BB, Gaudet S, Lauffenburger DA, and Sorger PK (2011). Lyapunov Exponents and Phase Diagrams Reveal Multi-Factorial Control over Trail-Induced Apoptosis. Mol Syst Biol 7, 553. PMID: 22108795.

Abstract

Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator-effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway.

Download PDF

Comments are closed.