


















establishes the level of activating Bcl-2 family proteins (e.g., tBid)

required for MOMP and subsequent cell death. To determine

the relationship between h and the threshold for MOMP, we

measured FR(t) dynamics in TRAIL-treated control cells or in cells

overexpressing Bcl-2 or Bcl-XL, in the presence or absence of the Bcl-2

inhibitor ABT-263 (Navitoclax). When parental cells were exposed

to 25 ng/ml TRAIL in combination with 10 lM ABT-263 (a dose of

drug that did not itself induce detectable cell death), C8 dynamics

were not altered (Fig 7A and B), and k or s were not significantly

different (Supplementary Fig S6A and B), but the fraction of dying

cells increased from 45 to 60% (Fig 7C, right panel). Based on EQ3,

increased cell death can be explained by a decrease of h, and we
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Figure 5. Quantitative measure of FLIP-S- and FLIP-L-dependent inhibitions of caspase-8 dynamics.

A, B FRET ratio trajectories for HeLa cells expressing different levels of FLIP-S-mCherry (A) or FLIP-L-mCherry (B) with protein level encoded by the intensity of the color
(as judged by mCherry intensity; see Materials and Methods for details) in cells treated with 250 ng/ml of TRAIL. Black dots show cell death; trajectories are
truncated subsequently.

C, D Relation between FLIP-S (C) or FLIP-L (D) level plotted on the x-axis and the rate of caspase-8 activation (black line), or the surviving fraction (blue line). Cells are
binned by FLIP levels. Data are represented as mean � SEM.

E Caspase-8 activity landscape for parental HeLa cells, FLIP-S-overexpressing cells (middle, same experiment as in A), and FLIP-L-overexpressing cells (right, same
experiment as in B). All cells were treated with 250 ng/ml of TRAIL. Surviving cells are denoted with white crosses and dead cells with black dots. The red line is the
fate boundary calculated with EQ3. The background color is based on the fate of cells (blue for surviving and yellow for dying). Marginal distributions are plotted
along each axis.

Source data are available online for this figure.
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found that h in ABT-263-treated cells (hABT) was 1.6-fold lower than

hT (Fig 7A and B). Most cells overexpressing either Bcl-2 or Bcl-XL

survived TRAIL concentrations of 250 ng/ml (the fraction of apopto-

tic cells was reduced from 92% in parental cells to less than 20% in

Bcl-2-/Bcl-XL-overexpressing cells) although maximal C8 activity

was much higher than what would be needed to cross hT (Fig 7D

and E; Supplementary Fig S6C). However, the addition of 10 lM
ABT-263 increased fractional killing of Bcl-2-/Bcl-XL-overexpressing

cells by TRAIL to 70% (Fig 7C, left panel). Because the level of

Bcl-2 or Bcl-XL was heterogeneous across cells in this experiment,

we could also confirm the prediction that apoptosis took place selec-

tively in cells with a lower level of Bcl-2 or Bcl-XL (P = 0.01 � 0.01,

Wilcoxon rank sum test). We conclude that, whereas changing the

dose or oligomeric state of DR4/5 agonists or co-drugging parental

or FLIP-overexpressing cells with bortezomib changes k and s in the

context of a constant threshold value for h (Fig 7F), changing the

levels or activity of Bcl-2 proteins changes the position of this

threshold (Fig 7G). In this way, h and the threshold for MOMP inter-

act to control the fraction of cells that die in response to a given

level of DR4/5 agonism.

Caspase-8 activation in other cell types

To investigate how the fates of other cell types are regulated by

TRAIL, we analyzed nine additional cell lines (including breast,

renal, lung, ovarian, and colorectal cells) having a range of sensitivi-

ties to TRAIL. A luminescent assay was used to measure C8 activity

in fixed cells at discrete times after the addition of TRAIL or agonist

antibodies. This approach does not have the single-cell resolution of

live-cell imaging and cannot cleanly distinguish between initiator

and effector caspase activity, but it has the benefit that genetic

manipulation of multiple cell lines is not necessary. In four cell lines

(Fig 8A), we observed that sub-nanomolar doses of TRAIL elicited

rapid C8-substrate cleavage and > 50% cell death; these cell lines
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Figure 6. Bortezomib overcomes FLIP-L- but not FLIP-S-induced resistance.

A Caspase-8 activity landscape for FLIP-L-overexpressing cells (left) and FLIP-S-overexpressing cells (right) treated with 250 ng/ml of TRAIL and bortezomib. Surviving
cells are denoted with white crosses and dead cells with black dots. The red line is the fate boundary calculated with EQ3. The background color is based on the fate
of cells (blue for surviving and yellow for dying). Marginal distributions are plotted along each axis.

B Surviving fraction of cells for parental HeLa cells or for FLIP-S-overexpressing cells or FLIP-L-overexpressing cells treated with 250 ng/ml of TRAIL, without (gray) or
with bortezomib (green). Data are represented as mean � SEM.

C Western blot analysis of FLIP levels after treatment of HeLa cells with 25 ng/ml of TRAIL alone (left) or with bortezomib (right) for different times.
D Mean of log10(k) for the parental lines, the FLIP-S- and the FLIP-L-overexpressing cells treated with 250 ng/ml of TRAIL, without (gray) or with bortezomib (green).

Data are represented as mean � SEM.
E Graphical representation of the effects of FLIP overexpression and bortezomib on the caspase-8 activity landscape in TRAIL-treated cells: FLIP-L decreases k, but the

remaining C8 activity is strong enough for bortezomib to push cells upward across the fate boundary. FLIP-S has a greater effect on k and bortezomib decreases k
even more, preventing cells to cross the fate boundary although the activity is sustained over a longer period.

Source data are available online for this figure.
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Figure 7. Inhibition and overexpression of Bcl-2 proteins shift the position of the cell fate threshold h.

A Derivative of FRET ratio for surviving cells (blue, left panel) and cells committing to apoptosis (yellow, middle panel) in cells co-treated with 25 ng/ml of TRAIL and
ABT-263. Cyan and black dots show the maximal value of the derivative (note that black dots also indicate cell death). Right panel shows the distribution of the
maximal value of the derivative for both populations. The plain red line indicates the optimal value of h (hABT) that separates the two populations with 91% accuracy;
the value is 19% lower than the value of hT computed for cells treated with TRAIL alone (dashed red line).

B Caspase-8 activity landscape for parental HeLa cells treated with 25 ng/ml of TRAIL and ABT-263 (same experiment as in A). Surviving cells are white crosses; dead
cells are black dots. The dashed red line is the fate boundary calculated with EQ3 of the parental HeLa cell line. The background color is based on the fate of the cells
(blue for surviving and yellow for dying). Marginal distributions are plotted along each axis.

C Surviving fractions for the parental lines (HeLa ICRP cells), the Bcl-2- and the Bcl-XL-overexpressing cells treated with 250 ng/ml (left) or 25 ng/ml of TRAIL (right)
without or with ABT-263 (gray and green, respectively). Data are represented as mean � SEM.

D Derivative of FRET ratio for the Bcl-2-overexpressing cells treated with 250 ng/ml of TRAIL. The dashed red line indicates h as defined for the parental population.
Surviving cells are in blue and dying cells in yellow. Cyan and black dots show the maximal values of the derivative (note that black dots also indicate cell
death).

E Caspase-8 activity landscape for the Bcl-2-overexpressing cells treated with 250 ng/ml of TRAIL (same experiment as in D). Surviving cells are white crosses; dead cells
are black dots. The dashed red line is the fate boundary calculated with EQ3 of the parental HeLa cell line. The background color is based on the fate of the cells (blue
for surviving and yellow for dying). Marginal distributions are plotted along each axis.

F Graphical representation of the effects of ligand dose, oligomeric state of DR4/5 agonists, and co-drugging with bortezomib or ABT-263 on dFR/dt and the
threshold h.

G Graphical representation of the effects of Bcl-2/Bcl-XL overexpression and ABT-263 co-drugging on the caspase-8 activity landscape following TRAIL treatment.
ABT-263 has the effect of reducing the fate boundary, whereas overexpression of Bcl-2 or Bcl-XL is interpreted as pushing the fate boundary toward the upper
right.

Source data are available online for this figure.
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phenocopy parental HeLa cells. In four cell lines, C8 activity was

low and few cells died, phenocopying HeLa cells overexpressing

FLIP (Fig 8B). In a final line, C8 activity was high but cell death was

low, phenocopying HeLa cells overexpressing Bcl-2 proteins

(Fig 8C). Based on these findings, we propose that about half of the

cell lines in our sample exhibit similar regulation as the HeLa cells

we have analyzed in detail, with rapid C8 activation, resulting in

high levels of TRAIL-mediated cell death. These are the cells

in which a C8 activation threshold is likely to play a dominant role

in determining fractional killing. The factors most important in

controlling TRAIL sensitivity are likely to differ in the other cell lines

and may include negative regulation of DISC activity and reduced

sensitivity to MOMP. Additional single-cell analysis and modeling

should make it possible to create fate maps applicable to these and

other cancer cell types.

Discussion

In this paper, we investigate the basis of fractional cell killing by

TRAIL and antibody agonists of DR4 and DR5 receptors. We demon-

strate the existence of a threshold in initiator caspase activity

(referred to as C8, since we do not distinguish caspases-8 and 10)

that must be exceeded for cells to die. C8 dynamics can be described

with considerable accuracy using a simple three-parameter phenom-

enological model that considers only the initial rate of caspase acti-

vation (k), the time subsequent to ligand addition at which C8

activity is maximal (s), and a threshold h for death. In cells that go

on to die, C8 activity rises rapidly and monotonically until the

threshold is reached and MOMP ensues. In cells that survive, C8

activity rises more slowly for 1–4 h, never achieving the level

required for death, and then falls back to pre-treatment levels over

the next 4–8 h due to proteasome-mediated protein degradation.

The observed variation in C8 trajectories from cell to cell most likely

arises from a combination of intrinsic and extrinsic noise (Spencer

et al, 2009; Gaudet et al, 2012) that causes variation in k and s: at
constant agonist dose, k varies ~tenfold across a cell population,

and s varies twofold to threefold. The probability that a cell will

achieve a sufficiently high value of C8 activity to exceed the thresh-

old and die is determined primarily by the C8 activation rate, k,

which in turn depends on the concentration, identity, and oligo-

meric state of the DR4/5 agonist.

The best evidence that the threshold we observe in C8-DISC

activity is biologically meaningful is that its value (its position in

the landscape of k and s) appears to be invariant for TRAIL,

apomab (anti-DR5), and mapatumumab (anti-DR4) over a range

of doses, in the presence and absence of bortezomib (which

slows degradation of C8 and other proteins) and following over-

expression of the resistance genes FLIP-S and FLIP-L. The posi-

tion of the threshold h does change with the level of Bcl-2 or

Bcl-XL, or when Bcl-2 inhibitors such as ABT-263 are present,

and is therefore set by the sensitivity of mitochondria for MOMP

(i.e., the level of mitochondrial ‘priming’) (Deng et al, 2007). In

this way, the C8-DISC threshold interacts with the classical

MOMP threshold to determine the fraction of cells that live or die

at any given level of DR4/5 activity.
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Figure 8. TRAIL-induced cell death and C8 activation measured in other cancer cell lines.
For each cell line, the dose of TRAIL shown in the legend is, for sensitive cell lines, the dose that resulted in ≥ 50% killing or, for resistant cell lines, the highest dose tested.
The surviving cell fraction (plain line, left axis) and the C8 activity fold change (dashed line, right axis) are plotted as a function of time. These data were obtained at fixed points
in time using fluorescent dyes as opposed to continuously in time using a genetically encoded reporter protein, as was done in HeLa cells for the previous figures. The
measured value for C8 activity becomes progressively less accurate as cells begin to die, because effector caspases also cleave the dyes. The left panel shows cell lines
that respond similarly to parental HeLa cells; the middle panel, the cell lines that respond similarly to FLIP-overexpressing HeLa cells; and the right panel, the cell lines that
respond similarly to our Bcl-2-/XL-overexpressing HeLa cells.
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The C8-DISC threshold we identify in HeLa cells is likely to be

related to thresholds previously postulated to control the choice

between MOMP-independent Type I and MOMP-dependent Type II

apoptosis in response to Fas ligands (Algeciras-Schimnich et al,

2003) and to protein kinase CK2-mediated regulation of tBid cleav-

age (Hellwig et al, 2010), although we have not yet investigated

these connections in detail. Cell death is largely cell autonomous in

our experiments, but under different conditions, it is likely that cells

can integrate information from neighboring cells and ‘remember’

previous exposure to TRAIL (Flusberg et al, 2013). Explaining such

effects will require a more complex model, ultimately one that

describes C8 activation kinetics in terms of the levels and precise

biochemical activities of apoptosis regulators (Albeck et al, 2008b;

Lopez et al, 2013).

Impact of resistance genes and drugs that sensitize cells to
extrinsic cell death

Experiments in a variety of tumor types have shown that sensitivity

to TRAIL is controlled by numerous factors including the levels of

expression of DR4, DR5, and C8, receptor glycosylation and resis-

tance genes for decoy receptors and cFLIP (reviewed by Dimberg

et al (2013)). In this paper, we examine two isoforms of one of the

most common resistance genes and show that both cFLIP-S and

cFLIP-L reduce k, the rate of C8 activation. Exposure of cFLIP-L-

overexpressing cells to bortezomib restores sensitivity to TRAIL,

and the magnitude of the effect is such that synergism between

TRAIL and bortezomib is effectively infinite. However, bortezomib

does not restore TRAIL sensitivity to cFLIP-S-overexpressing cells.

Although similar biochemistry appears to be involved in both cases,

we find that the impact of changes in k and s on cell killing is highly

nonlinear because of threshold effects. Bortezomib stabilizes C8—

increasing s and acting to promote apoptosis—while also stabilizing

cFLIP-S and cFLIP-L—which decreases k and reduces apoptosis.

However, cFLIP-S is sufficiently potent as a C8 competitor relative

to cFLIP-L that a significant phenotypic difference is observed upon

bortezomib co-administration.

The phenomenological model described by the landscape of k

and s helps to clarify our understanding of these phenomena in

another way. FLIP regulates NF-jB-mediated survival pathways,

and bortezomib is known to alter the levels of multiple factors

that regulate NF-jB and apoptosis (e.g., IjBa (Hideshima et al,

2002), IAP, and Bcl-2 proteins (de Wilt et al, 2013)). However, the

sufficiency of a simple C8 model in quantifying cell fate in FLIP-S-

or FLIP-L-overexpressing cells in the presence and absence of borte-

zomib argues that the phenotypically consequential biochemistry

for cell death lies at the level of DISC activity. This form of

Occam’s razor argues that all the other myriad changes induced

by bortezomib or FLIP are substantially less significant for cell

fate. By applying similar reasoning to other cell types and resis-

tance genes, it should be possible to create an intelligible and

actionable molecular model of TRAIL sensitivity and resistance

across diverse cancer genotypes and to thereby predict the effects

of new agents and drug combinations (Merino et al, 2006). A

preliminary analysis of 9 additional cell types suggests that we will

find several phenotypic classes, which we can approximately map

to parental, c-FLIP-overexpressing, or Bcl-2-overexpressing HeLa

cells.

Implications for cancer therapy

The failure of multiple anti-DR4/5 therapeutic antibodies in clinical

trials due to lack of efficacy has significantly dampened interest in

this once-promising class of therapeutic agents. Particularly in the

case of apomab, our data reveal an extraordinary lack of potency

when compared to the recombinant TRAIL ligand. Even at concen-

trations above 100 nM, apomab induces C8 no better than

0.025 nM (1 ng/ml) TRAIL, a 4,000-fold difference. Low potency is

also observed in the great majority of other cell lines we have exam-

ined, although there is evidence of exceptional responders among a

subset of breast cancer and sarcoma cell lines (Zinonos et al, 2009).

In this context, it should be noted that the TRAIL used in this paper

is a recombinant form of the ligand that is artificially trimerized and

almost certainly more potent than TRAIL produced naturally in the

body or the therapeutic agent, dulanermin (Soria et al, 2010).

Recombinant TRAIL is nonetheless useful as a comparator because

it reveals the level of receptor activity that can in principle be

achieved using an artificial agonist. In the case of apomab, low DISC

activity is not caused by low binding affinity because we can satu-

rate receptors with apomab (at ~200 nM), at which point cell killing

begins to fall as the concentration rises further. Antibody-mediated

clustering has been shown to increase apomab potency (Adams

et al, 2008), and the requirement for an agonist to bridge multiple

receptors presumably explains squelching at high antibody concen-

trations. We find that clustering does increase k significantly but

that this is insufficient to drive cells to a point in the landscape of k

and s where killing by apomab is efficient. We predict, and show

experimentally, that efficient cell killing by apomab in HeLa cells

requires a combination of clustering agent to increase k and borte-

zomib to increase s. Rescuing DR4/5 agonists as a therapeutic class

will require designing antibodies that can achieve values of k and s
that exceed h in a large fraction of cancer cell types either

individually or in combination with agents such as bortezomib;

high-affinity binding to TRAIL receptors is not sufficient.

The variation we observe in h with changes in the levels or activ-

ities of anti-apoptotic Bcl-2 proteins demonstrates a link between

the C8-DISC threshold and the level of mitochondrial priming. In

this way, cells integrate information from extrinsic and intrinsic

pathways to set their overall sensitivity to death receptor agonists.

Looking forward, it seems likely that a more complete biochemical

model of the C8 and MOMP thresholds will reveal new ways to

overcome TRAIL resistance in different cell types, perhaps by co-

drugging to increase mitochondrial priming (Certo et al, 2006). The

goal of future therapies must be to maximize Emax and not just IC50.

Phenomenological models that account for cell-to-cell variability

and the temporal dynamics of caspase activation are likely to prove

useful in achieving this goal and also in identifying cell fate bifurca-

tions controlling other forms of programmed cell death.

Materials and Methods

Cell lines and materials

The initiator caspase activity reporter (ICRP) and mitochondrial outer

membrane permeabilization (MOMP) reporter (IMS-RP) were

constructed as previously described (Albeck et al, 2008a). FLIP-L and
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FLIP-S plasmids were obtained from Dr. Inna Lavrik. Bcl-2/XL plas-

mids were obtained from Addgene (Cambridge, MA). mCherry-

tagged versions of FLIP-L, FLIP-S, Bcl-2, and Bcl-XL were constructed

by PCR, C-terminus ligation to mCherry, and cloning into pQCXIP

(Clontech). HeLa cells were obtained from the ATCC and cultured in

DMEM supplemented with 10% fetal bovine serum, 5 mM L-gluta-

mine, and penicillin/streptomycin (Gibco). HeLa cells stably express-

ing combinations of ICRP and IMS-RP were derived by infection with

retrovirus (293 Transfection Clontech, Mountain View, CA), double-

positive selection by FACS, single-cell sorting, and were grown in 96-

well plates until 1 colony appeared. Freshly cloned cells (below

passage 10) were used in all experiments. FLIP-L-, FLIP-S-, Bcl-2-,

and Bcl-XL-mCherry-expressing cells were obtained by infection of

retrovirus encoding the respective mCherry-fusion gene into the

parental clone of HeLa ICRP cells. After infection, a heterogeneous

cell population was maintained so we could probe the consequences

of varied levels of each mCherry-tagged protein. Recombinant human

(rh) TRAIL was obtained from R&D Systems (Minneapolis, MN).

apomab and mapatumumab were gracious gifts from Merrimack

Pharmaceuticals, Inc. (Cambridge, MA; see Supplementary Materials

and Methods). Donkey F(ab0)2 anti-human Fcc was purchased from

Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA).

Immunoblotting

Cells were lysed in Laemmli sample buffer; proteins were separated

by SDS–PAGE (50 lg per lane, unless otherwise noted) and

transferred to PVDF membranes. Membranes were blocked with

Odyssey Blocking Buffer (LiCor) and probed with antibodies against

caspase-8 (Cell Signaling Technologies), FLIP (NF6, obtained from

Pr. Inna Lavrik), DR4 and DR5 (ProSci, Poway, CA), GFP (Abcam,

Cambridge, MA), or b-Actin (Sigma, St. Louis, MO). Binding

was detected via secondary antibodies conjugated with IRDye800

(Rockland Immunochemicals) or Alexa Fluor 680 (Invitrogen) using

a LiCor Odyssey scanner. Protein levels were quantified using the

LiCor analysis toolbox. Average pixel intensity was calculated for

uniform rectangular regions framing individual bands, and the mean

pixel intensity around each rectangular region of interest was used

for background subtraction.

Determination of FLIP-mCherry protein number in individual
cells in microscopy experiments

FLIP-mCherry-expressing cell populations were sorted by FACS into

four pools: low, medium, high, and highest mCherry expression

levels. Quantitative Western blotting for FLIP relative to recombinant

FLIP was performed to determine the mean number of proteins per

cell in each pool. Based on a linear interpolation of these measure-

ments, we inferred the expression level of FLIP in a single cell based

on its mCherry fluorescence measured by FACS. Finally, we matched

the distribution obtained by FACS to the distribution of mCherry

fluorescence measured by microscopy to obtain an estimation of the

level of FLIP in each cell used in the microscopy experiments.

High-throughput live-cell imaging and analysis

Clonal HeLa cells stably expressing the FRET-based initiator caspase

reporter (ICRP) were seeded into 96-well plates coated with rat-tail

collagen I (BD, Franklin Lakes, NJ). Cells were imaged every 5 min

for up to 24 h in the live-cell chamber of an Operetta robotic micro-

scope (Perkin Elmer, Waltham, MA; see Supplementary Materials

and Methods for details). For image analyses, cell segmentation,

intensity readouts, tracking, evaluation of cell death and MOMP

time, and trajectory fitting were performed using MATLAB (Natick,

MA) with scripts developed in house (see Matlab Code in the Supple-

mentary Information). See also Supplementary Materials and Meth-

ods for details.

Trajectory fitting

The average FRET ratio trajectory of all untreated cells was

subtracted from the FRET ratio trajectory of each treated cell. Noise

in the trajectories was then filtered using the MATLAB function filt-

filt with a windows size corresponding to 55 min (11 frames). For

each trajectory, the minimal value of the FRET ratio was subtracted

from the trajectory. We computed the derivative of the FRET ratio

using finite differences and filtered the trajectories using the

MATLAB function filtfilt with a window size corresponding to

55 min (11 frames).

The fitted model is based on the equation:

FRðtÞ ¼ 0 if t\t0
k � ðt � t0Þ2 if t� t0

�
:

The time of maximal value for the derivative of the FRET ratio

(s) was used as the end point to fit the model to the FRET ratio

using the MATLAB function fit. The parameter t0 was constrained to

be in the range [�30 min, s � 30 min] and k to [0, 0.01]. In cases

in which the fit to a trajectory was bad (r2 < 0.5), we tried to

improve the fit by ending the fitting on a secondary maximum; the

fit with the best r2 was kept. All fits were tested for significance

using an F-test against a flat model (FR(t) = cste) with P = 0.05 as a

cutoff. In cases in which the fit was not significantly better than the

flat model, k was set to the value 10�7 (minimum value observed

for a fit). Cells that died early (at times less than 70 min) and whose

trajectory could not be fitted by the equation above were discarded

from subsequent analysis on the assumption that they represented

other forms of cell death or loss. All single-cell trajectory data used

in this paper and the values of fitted parameters are available at

http://lincs.hms.harvard.edu/roux-molsystbiol-2015 to allow others

to explore different analytical approaches.

Determining the value h

The value h was found by minimizing the error function:

ErrðhÞ ¼
X

Surviving cells

HðMax (C8)� hÞ � ðMax(C8)� hÞ

þ
X

Dying cells

Hðh�Max (C8)Þ � ðh�Max (C8)Þ;

where Θ is the Heaviside function: HðxÞ ¼ 0 if x� 0
1 if x[ 0

�

The value hT = 2.63 × 10�3 was the value that minimizes the

error function across all experiments of the parental HeLa cells

treated with doses of TRAIL equal to or above 10 ng/ml and no

other drug; hT25 was the value computed using data for 25 ng/ml
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TRAIL only. hT and hT25 were not significantly different from each

other despite the use of different training data. We used the value

hT in the analyses of antibody agonists and cells co-drugged with

TRAIL and either bortezomib or ABT-263. For the plot in Fig 7A

and B, we obtained an optimal value for hABT using replicate experi-

ments of cells exposed to 25 ng/ml TRAIL and 10 lM ABT-263.

Data availability

The data relevant to this study are available at http://lincs.hms.

harvard.edu/roux-molsystbiol-2015. Data in tabular format are

provided as Supplementary Datasets S1, S2, S3 and S4, and the scripts

for the image and data analyses are provided as well (Matlab Code).

Supplementary information for this article is available online:

http://msb.embopress.org
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