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R E S E A R C H A R T I C L E
C A N C E R
Profiles of Basal and Stimulated Receptor
Signaling Networks Predict Drug Response
in Breast Cancer Lines
Mario Niepel,1*† Marc Hafner,1† Emily A. Pace,2† Mirra Chung,1 Diana H. Chai,2

Lili Zhou,1 Birgit Schoeberl,2 Peter K. Sorger1*
Identifying factors responsible for variation in drug response is essential for the effective use of tar-
geted therapeutics. We profiled signaling pathway activity in a collection of breast cancer cell lines
before and after stimulation with physiologically relevant ligands, which revealed the variability in
network activity among cells of known genotype and molecular subtype. Despite the receptor-based
classification of breast cancer subtypes, we found that the abundance and activity of signaling pro-
teins in unstimulated cells (basal profile), as well as the activity of proteins in stimulated cells
(signaling profile), varied within each subtype. Using a partial least-squares regression approach,
we constructed models that significantly predicted sensitivity to 23 targeted therapeutics. For exam-
ple, one model showed that the response to the growth factor receptor ligand heregulin effectively
predicted the sensitivity of cells to drugs targeting the cell survival pathway mediated by PI3K (phos-
phoinositide 3-kinase) and Akt, whereas the abundance of Akt or the mutational status of the enzymes in
the pathway did not. Thus, basal and signaling protein profiles may yield new biomarkers of drug sen-
sitivity and enable the identification of appropriate therapies in cancers characterized by similar func-
tional dysregulation of signaling networks.
INTRODUCTION

Large-scale sequencing of human tumors has identified an increasing
number of genes encoding signaling proteins that are mutated, overex-
pressed, or deleted in cancer; examples include the genes encoding the
kinase Akt, the lipid phosphatase PTEN (phosphatase and tensin homo-
log), the epidermal growth factor (EGF) receptors ErbB2 and ErbB1,
mitogen-activated protein kinases (MAPKs), and the proto-oncoprotein
Raf (1) (see table S1 for a list of gene names and abbreviations used here).
Many drugs targeting these proteins are in clinical use or development, but
most drugs work in only a subset of patients (2–7). In a few cases, single
genetic factors are highly predictive of drug response in cell lines and hu-
man tumors: Bcr-Abl translocation predicts sensitivity to imatinib in leu-
kemia (8), and the BRAFV600E mutation predicts at least initial sensitivity
to vemurafenib in melanoma (4, 5). However, the situation is usually more
complex.

Early-stage breast cancer is generally treated surgically, and adjuvant
drugs are chosen on the basis of the morphology of the cancer and its
molecular subtype, which is defined by the abundance of three recep-
tors (9). The HER2amp subtype is defined by amplification of the receptor
tyrosine kinase (RTK) ErbB2 (also known as Her2) and is typically scored
using immunohistochemistry or by assaying for gene amplification. Over-
expression of the estrogen receptor (ER) or progesterone receptor (PR)
defines the HR+ (hormone receptor–positive) subtype. In triple-negative
breast cancers (TNBCs), the abundance of all three receptors is low. HER2amp

status serves as a biomarker for therapy with antibodies that target ErbB2,
1Harvard Medical School Library of Integrated Network-based Cellular Signa-
tures Center, Department of Systems Biology, Harvard Medical School, Boston,
MA 02115, USA. 2Merrimack Pharmaceuticals, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: peter_sorger@hms.harvard.edu (P.K.S.);
mario_niepel@hms.harvard.edu (M.N.)
†These authors contributed equally to this work.
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such as trastuzumab or pertuzumab (2, 3, 10–13), and HR+ status is a bio-
marker for therapy with HR antagonists, such as tamoxifen (14, 15).
TNBCs are usually treated with cytotoxic chemotherapy (14, 16), some-
times in combination with ErbB1 inhibitors (17) and function-blocking
antibodies targeting ErbB family members (18). However, breast cancer
subtypes are heterogeneous (19–21), classical molecular subtypes (as de-
scribed above) and those defined by whole-genome expression profiling
are not identical (22), and even the best available biomarker, HER2amp

status, correctly predicts response to trastuzumab in only a subset of pa-
tients (2, 3, 10, 11). The need for better biomarkers is particularly urgent
for TNBCs because they appear to be genetically more heterogeneous
than other breast cancer subtypes (23) and patients with these tumors have
poor prognosis (24).

Projects like the Cancer Cell Line Encyclopedia aim to identify ge-
nomic features, such as gene amplification, mutation, deletion, or epige-
netic modifications, that correlate with and are ultimately predictive of
drug response (20, 21, 25–27). However, biochemical data on drug targets,
such as abundance or phosphorylation status, are potentially more predic-
tive of drug response than genomic features (28–30). Despite this and the
availability of some systematic steady-state protein data (21, 22), few studies
have tried to relate the biochemistry of signal transduction to drug response
on a large scale (31).

Here, we investigated whether measurements of the basal and stimu-
lated states of signal transduction networks are predictive of drug response
as measured by the GI50 value, the concentration of drug that reduces cell
number by 50% relative to a no-drug control when assayed at a fixed time
after drug exposure (20). We measured the abundance and basal phos-
phorylation state of nuclear and cell surface receptors, and of downstream
signaling kinases in a standardized NCI-ICBP43 cell line collection
(21). The choice of which receptors to measure was a practical one: We
focused on RTKs, because they are clearly implicated in breast cancer
biology, and assayed all receptors for which we could verify the specificity
CIENCESIGNALING.org 24 September 2013 Vol 6 Issue 294 ra84 1
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and linearity of plate-based immune assays. Biological ligands present in
the microenvironment alter drug sensitivity (32, 33), and thus, some fea-
tures of signal transduction may not be apparent by steady-state profiling.
Therefore, we also measured the activities of downstream signaling kinases
before and after exposing cells to a diverse set of growth factors and
cytokines. We then evaluated how the resulting set of ~3 × 105 receptor
and cell response measurements segregated with molecular subtype and
whether they could predict the sensitivity of cells to a range of targeted
anticancer drugs (20). We found that predictors could be constructed for
more than half of the drugs we analyzed and that data on molecular sub-
type, signaling biochemistry, and genetic status could be combined to
construct hybrid response biomarkers that are mechanistically plausible
and may translate into the clinic.
RESULTS

Mapping protein profiles onto subtypes
We profiled two aspects of signaling networks in cell lines of the ICBP43
panel that could reliably be grown as adherent cells (table S2). The “basal
profiles” set was defined as the data for the abundance and basal phos-
phorylation of 22 receptors and 3 downstream kinases [ERK (extracel-
lular signal–regulated kinase), Akt, and Src] (table S3) and the abundance
of the ER and PR. All basal phosphorylation and protein abundance data
were obtained by enzyme-linked immunosorbent assay (ELISA), and
where possible, we estimated steady-state levels in molecules per cell by
calibration with recombinant protein (see Materials and Methods). For
the RTK phosphorylation data, we measured the amount of total phospho-
tyrosine rather than of individual phosphorylation sites, with the excep-
tion of IGF1R, for which we measured phosphorylation of Tyr1131. Note
that such an approach ignores the fact that different phosphorylation
events on the same protein often have different biological effects. To gen-
erate the “signaling profiles” set, we exposed the cells individually to 22
growth factors or cytokines (table S4) for 10, 30, or 90 min and monitored
the response by immunofluorescence microscopy of key signaling kinases
and transcription factors (table S5). Activation of NF-kB (nuclear factor
kB) was based on nuclear translocation of its subunit p65; activation of all
other signaling proteins was based on phosphorylation. Not every ligand
was analyzed with every assay (fig. S1).

Basal profiling revealed that some RTKs, such as ErbB2, ErbB1,
ErbB3, c-Met, and IGF1R (insulin-like growth factor 1 receptor), were present
in many of the cell lines (Fig. 1A), whereas others, such as PDGFR (platelet-
derived growth factor receptor) and VEGFR (vascular endothelial growth
factor receptor), were detectable in only a few lines (data S1). Absolute abun-
dance varied from ~107 molecules per cell for ErbB2 to ~100 molecules per
cell for c-Kit or IGF1R (data S1). The abundance of ErbB2 varied 10-fold
among HER2amp cells (and ~103-fold across the collection), but the HR+ line
with the greatest amount of ErbB2 had only about 3-fold less receptor
than the HER2amp line with the lowest amount (Fig. 1A). The same was
true for amounts of ER and PR, which varied 100-fold with intermin-
gling of subtypes (Fig. 1B). More generally, we found that all of the
broadly distributed receptors in our data set exhibited high variability in
abundance across all molecular subtypes. Thus, these results show that the
dichotomous classification of breast cancers by receptor presence or ab-
sence belies the fact that actual receptor abundance varies in a graded fash-
ion across subtypes.

Among the receptors profiled, ErbB2 was unique in that basal phospho-
rylation was highly correlated with protein abundance (Fig. 1A; Spearman’s
R = 0.86; P = 3 × 10−12), whereas the abundance and basal phosphoryl-
ation status of other receptors exhibited little or no correlation. A likely
www.S
explanation is that ErbB2 can self-associate when present in high abun-
dance and autoactivate in the absence of ligand (34), whereas most other
RTKs are only activated by ligand binding. The amount of phosphoryl-
ated ErbB2 (pErbB2) in HER2amp cells also correlated closely with
amounts of pErbB1, pErbB3, and pErbB4 (fig. S2A) (34, 35) and with
the phosphorylated forms of the insulin and insulin-like growth factor
receptors (pInsR and pIGF1R; fig. S2A). Although pIGF1R can cross-
activate ErbB2 in trastuzumab-resistant HER2amp cells (36), our data
showed that high phosphorylation of IGF1R occurred in 8 of 11 HER2amp

cell lines (Fig. 1A and fig. S2B). IGF1R (but not ErbB2) was also highly
phosphorylated in a subset of TNBC cells (fig. S2B). High phospho-
rylation of IGF1R and InsR is linked to poor patient survival across all
breast cancer subtypes (37), and IGF1R has been targeted therapeuti-
cally (38, 39).

Hierarchical clustering of basal profiles revealed three clusters
with several outliers: cluster BI included most of the TNBC lines (12
of 15), and BII most of the HR+ lines (7 of 10); HER2amp lines were
present in all three clusters (Fig. 1C). Nonmalignant cell lines (NM)
did not have increased amounts of ErbB2, ER, or PR and clustered
closely with a subset of the TNBC lines in BI. Principal components
analysis (PCA) revealed a similar distribution as found by hierarchi-
cal clustering with the TNBC lines tightly grouped in BI, HR+ lines
in BII, and HER2amp lines widely distributed (Fig. 1D). Variables
identified by PCA (fig. S3) explained the differences between the
clusters. In BI, ErbB1 and c-Met were highly abundant, whereas FGFR4
(fibroblast growth factor receptor 4) and ErbB3 were of low abun-
dance in these cell lines; cell lines in BII exhibited the converse pat-
tern (Fig. 1E).

Analysis of the responses to growth factors or cytokines in 37 of
the cell lines, which defined the signaling profiles, yielded four clus-
ters, with TNBC cells falling together in SI and HR+ lines in SII (Fig.
2A, only the 20 most variable measurements are shown), consistent
with their placement in BI and BII, respectively (Fig. 1C). When ana-
lyzing the degree to which phosphorylation of ERK1/2 (pERK) could
be induced, we found that TNBC cells were generally more responsive
to EGF and the c-Met ligand HGF (hepatocyte growth factor), whereas
HR+ cells responded more robustly to FGF-2 and heregulin (HRG), a
ligand that binds to ErbB2-ErbB3 heterodimers (Fig. 2B). To validate
the signaling profiles collected by microscopy, we measured ligand re-
sponses using ELISA assays for pAkt and pERK, the linearity of which
can be tested using recombinant protein standards. The profiles col-
lected using the imaging and ELISA methods were highly correlated
(fig. S4).

Unsupervised clustering showed that HR+ and TNBC lines in the
ICBP43 collection were distinguishable by the abundance and respon-
siveness of receptors that are not conventionally part of the subtype def-
inition. These receptors include c-Met (for TNBC) and FGF receptors
(for HR+), both of which are activated by components of the tumor mi-
croenvironment that are implicated in drug resistance (32, 33, 40) and are
being intensively targeted by therapeutic antibodies and small-molecule
drugs (41, 42). From a molecular and diagnostic perspective, the HER2amp

subtype is generally regarded as the most distinctive, but unsupervised
clustering divided HER2amp cells into multiple groups (Fig. 1C) based
on 10- to 100-fold differences in the abundance of c-Met, FGFR4, and
EGFR (epidermal growth factor receptor) (Fig. 1E). Although many
HER2amp cell lines responded weakly to most growth factors, perhaps be-
cause high pErbB2 causes constitutive downstream signaling, a subset of
HER2amp cells was highly responsive to interleukin-6 (IL-6) (Fig. 2, A and
C). High amounts of IL-6 have been observed in some primary breast
cancers and are associated with poor clinical outcomes (43–45). These
CIENCESIGNALING.org 24 September 2013 Vol 6 Issue 294 ra84 2
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Fig. 1. Abundance and phospho-
rylation status of RTKs reveal het-
erogeneity in receptors within clinical
subtypes in 39 breast cancer cell
lines. (A) Bars indicate the abun-
dance of the RTKs, colored by clinical
subtypes (red, TNBC or nonmalig-
nant; yellow, HER2amp; purple, HR+).
The black line is the amount of phos-
phorylated receptor. Dashed lines
show the detection threshold for
total protein abundance (gray) and
phosphoprotein abundance (black).
(B) Abundance of the ER and PR
(ER, solid; PR, dashed; sum of ER
and PR as bars). Horizontal gray lines
show the detection thresholds (ER,
solid; PR, dashed). (C) Clustering
of cell lines according to their basal
profile defines three main clusters
(BI, blue; BII, green; BIII, yellow; out-
liers, black). Color intensity in the
heat map indicates abundance of
the indicated protein or phospho-
protein in picogram per cell for pro-
tein abundance and in arbitrary
units (a.u.) for phosphorylation mea-
surements (measurements below
detection threshold are in gray).
Black horizontal lines show the clus-
ter separations. (D) Projection of cell
lines on the first two principal axes
of a PCA (fig. S3) of the basal mea-
surements. (E) Projection of cell lines
on the indicated key variables iden-
tified by PCA. Dashed lines show
the detection thresholds for each
measurement.
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results suggested that HER2amp cell lines exhibit substantial heterogeneity
at the signaling and receptor levels, which may possibly be a consequence
of factors known or suspected to be involved in tumor progression and
drug resistance (40, 46).
www.S
Predicting drug response from basal and signaling data
Previous attempts to correlate genomic features with drug response often
start with a binary division into resistant and sensitive classes, with some
exceptions (26). Although it is broadly true that subtype enriches for sen-
CIENCESIGNALING.org 24 September 2013 Vol 6 Issue 294 ra84
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sitivity to some drugs (HER2amp cells to ErbB2 inhibitors), in most cases,
GI50 varies continuously across the cell line panel (20). There is, for ex-
ample, no principled way to divide the trimodal distribution of GI50 values
for the ErbB1 inhibitor erlotinib into resistant and sensitive classes (Fig.
3A). Therefore, rather than create a classifier, we attempted to predict ac-
tual GI50 values directly using partial least-squares regression (PLSR). The
quality of each prediction was assessed by a q2 value derived from a leave-
one-out cross-validation, and the significance of prediction was assessed by
the P value of the correlation between predictions and measurements (see
text S1 and fig. S5). In the case of erlotinib, subtype was a poor response
predictor (20), but we were able to build a PLSR model (q2 = 0.36 and P =
6.15 × 10−4) to correctly identify sensitive TNBC and HR+ lines (in blue in
Fig. 3A) from a large set of insensitive lines. Although erlotinib is not a
standard treatment for breast cancer, it is part of 32 ongoing trials (47).

We built PLSR models to predict previously reported GI50 values
for 43 targeted drugs (20) (data S2) using different partitions of our data
sets that corresponded to the basal or signaling profiles (table S6). Overall,
23 models were statistically significant at a false discovery rate (FDR) of 0.15
(Table 1; see data S3 for model coefficients). Most of the drugs targeting
ErbB, the MAPK pathway or phosphoinositide 3-kinase to Akt (PI3K/Akt)
pathway, and histone deacetylases (HDACs) were predicted with statistical
significance (Fig. 3B). The quality of predictions of the signaling profiles
collected by ELISA (used for validation) and microscopy has a Pearson’s
correlation ofR = 0.52,P = 3.0 × 10−4 (fig. S6 and data S4). In general, models
based on signaling profiles yielded higher q2 values for drugs with intra-
cellular targets, like the PI3K/Akt pathway, than did those based on basal
profiles (Fig. 3C).

Predicting sensitivity to PI3K/Akt inhibitors from
the response to heregulin
Drugs targeting proteins in the PI3K/Akt pathway are important inves-
tigational agents for breast cancer with 24 agents in ~150 trials (47).
Furthermore, PIK3CA (encoding the PI3K p110a subunit) and PTEN
(encoding a phosphatidylinositol phosphatase) are frequently mutated
in breast cancer (1, 22). We found that mutational status was not a sig-
nificant predictor of drug response for ICBP43 cell lines (table S7),
and no clear correlation has been reported in the literature (48). We
constructed statistically significant PLSR models for six drugs that tar-
get various enzymes in the PI3K/Akt pathway—three targeting PI3K,
two targeting mechanistic target of rapamycin (mTOR), and one target-
ing Akt—using either the signaling profile data set or the basal profile
data set (Fig. 4A). Signaling profile data produced statistically signif-
icant PLSR models for five drugs targeting the PI3K/Akt pathway. Al-
though the sensitivity to some drugs was also predicted by basal profiles,
models that used signaling data yielded substantially higher q2 values for
four of six drugs. Inspection of the models showed that the abundance of
pERK in cells exposed to the ligand HRG had the highest coefficients, sug-
gesting that responsiveness to HRG, but not other ligands that induce pAkt,
is linked to sensitivity to PI3K/Akt inhibitors (fig. S7A). HRG responses
were also the key variables inmodels built on the ligand responses collected
by ELISA (fig. S7B).

Ligand response can be measured in cultured cells but not easily in
tumors. We therefore looked for basal measurements that might serve as
a surrogate for the HRG response. HRG binds to heterodimers of ErbB2
and ErbB3, and we observed that the sum of their abundances could sub-
stitute for the amount of pERK in HRG-treated cells (Fig. 4B; illustrated
for GSK2126458). Using ErbB2 and ErbB3 amounts, we predicted GI50
values for six drugs with similar or better accuracy than was achieved with
the original PLSRmodels (Fig. 4C). We did not arrive at the [ErbB2 + ErbB3]
predictor by systematically searching through the data set for measures
www.S
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Fig. 3. Basal profiles and signaling profiles predict responses to targeted

inhibitors. (A) Projection of the fit of the PLSR model based on the signaling
profile data predicting GI50 values for erlotinib responses against the
measured response for each cell line (red, resistant; blue, sensitive). Lower
plot shows the trimodal distribution of the measured GI50 values across the
cell lines. (B) Fraction of drugs for each class (see Table 1) predicted by
the totality of the data (black), the signaling profile based on the maximal
response to the 15 growth factors (white), and the basal profile (gray). (C)
Distribution of the q2 for drugs significantly predicted by the basal or
signaling profile grouped by primary drug targets (Aktp, Akt pathway;
MAPKp, MAPK pathway; CC, cell cycle). Nonsignificant predictions (NS)
are set to zero. Colors represent different classes of drugs.
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correlated with drug response; the danger of such a search is that it
potentially uncovers random correlations between a large number of
independent variables (biochemical measurements) and a dependent
variable (GI50 value), particularly when the number of cell lines is
small. Instead, we used PLSR to identify the most predictive model
in a principled way and then generated a related, but easier to measure,
predictor by combining information on top coefficients of the models
and the previous knowledge that HRG functions through the ErbB2-
ErbB3 complex. Although one might have expected total or phospho-
rylated amounts of Akt to serve as an effective surrogate, we found that
measure of Akt was not an effective predictor of the response (Fig. 4C),
although cells carrying either mutations in the region of PIK3CA en-
coding the helical domain or in PTEN did have increased pAkt (P =
0.029) compared with cell lines lacking either of these mutations (data
S1), consistent with previous reports (28). The [ErbB2 + ErbB3] predictor
is potentially assayable in clinical samples and appears to distinguish sen-
sitive from insensitive TNBC cells, an area in which the clinical need is
greatest.

Improving drug prediction by stratification
of cancer cells
A second way in which to combine experimental data and previous
knowledge is to build PLSR models for different subsets of cell lines
based on their molecular subtype or mutational status. We applied this
to the pan-PI3K inhibitor GSK2126458, which is only poorly predicted
by basal profiles when all cell lines are considered (q2 = ~0.1; Fig. 5A).
By dividing the cell lines according to their subtype, TNBC versus HR+

and HER2amp (HR+/HER2amp), we obtained a good prediction for both
groups (q2 = ~0.35; Fig. 5A). TNBC cell lines are generally resistant,
but a few are as sensitive as HR+/HER2amp cells, and the model captured
this (Fig. 5B). Subtype-specific models predicted GI50 values for TNBC and
HR+/HER2amp cells using different biochemical features: ErbB3 abun-
www.S
dance alone could discriminate sensitive and insensitive TNBC cells
(confirming one component of the [ErbB2 + ErbB3] predictor), whereas
basal pERK was the key variable for HR+/HER2amp cells (Fig. 5, C and D,
and data S5). The abundance of ErbB3 had no predictive value for the
HR+/HER2amp cells because the amount of ErbB3 varied little among
the cell lines of these subtypes (Fig. 1A).

Whereas relatively few models were improved by stratifying by sub-
type, stratification by mutational status had a larger impact. In the case of
triciribine, an inhibitor of Akt that also targets other kinases, we could not
construct a significant PLSR model using biochemical data alone, but ex-
cluding cells carrying PIK3CA or PTEN mutations resulted in a highly
predictive model (Fig. 5E and data S5). In the model for wild-type lines,
cells sensitive to triciribine had high amounts of phosphorylated c-Met
and high VEGFR1 and were distributed across all three clinical subtypes
(Fig. 5F, blue). When we built models stratified by mutational status for
the 11 drugs targeting the PI3K/Akt pathway in our data set, prediction
was improved for either wild-type or PIK3CA and PTEN mutant cell lines
in six cases (Fig. 5G), resulting in significant predictions using either a
general or a stratified model for 10 of the 11 drugs. Because of varying
sample sizes (not all drugs were tested on all cell lines), it is difficult to
precisely quantify the degree of improvement, but our findings suggest
that molecular determinants of drug response differ in wild-type and
PIK3CA/PTEN mutant cells.

Identifying response outliers with modeling
Drugs targeting ErbB are a special case in breast cancer because they
are important clinically and well predicted by HER2amp status. However,
the correlation is not perfect, which creates two challenges: to predict
HER2amp lines that are resistant to ErbB-targeted drugs and to identify
TNBC and HR+ lines that are sensitive. We built PLSR models for ErbB-
targeted drugs using basal profiles and visualized cell lines on the landscape
of model variables (Fig. 6A). This landscape was built by drawing edges
Table 1. List of drugs for which GI50 values are significantly pre-
dicted using PLSR models. Quality of the prediction (q2) for the
drugs significantly predicted by any of the data sets used (see table
S6). The Benjamini-Hochberg procedure with FDR = 0.15 was used
for significance, and the P value of the data set with the highest q2 is
reported.
Drug name
 Primary target
 Drug class
CIENCESIGNALIN
Highest q2
G.org 24 September 2013
Corresponding P value
Lapatinib
 ERBB2
 ErbB
 0.600
 6.83 × 10−7
Gefitinib
 EGFR
 ErbB
 0.464
 5.98 × 10−5
TCS 2312
 CHEK1
 Cell cycle
 0.455
 2.15 × 10−4
GSK1059615
 PIK3CA
 Akt pathway
 0.450
 8.67 × 10−5
Oxamflatin
 HDAC
 HDAC
 0.420
 1.83 × 10−4
TCS JNK 5a
 MAPK9–10
 MAPK pathway
 0.419
 1.80 × 10−3
Bosutinib
 SRC
 MAPK pathway
 0.406
 9.49 × 10−4
Afatinib
 ERBB2
 ErbB
 0.406
 1.92 × 10−3
Rapamycin
 MTOR
 Akt pathway
 0.391
 5.80 × 10−4
GSK1070916
 AURKB-C
 Cell cycle
 0.370
 8.12 × 10−5
Erlotinib
 EGFR
 ErbB
 0.355
 6.15 × 10−4
GSK2119563
 PIK3CA
 Akt pathway
 0.337
 8.93 × 10−4
A6730 SIGMA
 Akt1–2
 Akt pathway
 0.312
 1.75 × 10−3
GSK2126458
 Pan-PIK3
 Akt pathway
 0.303
 9.49 × 10−4
GSK1120212
 MAP2K1–2
 MAPK pathway
 0.293
 1.07 × 10−3
AG1478
 EGFR
 ErbB
 0.270
 3.22 × 10−3
AZD6244
 MAP2K1–2
 MAPK pathway
 0.264
 1.18 × 10−2
Temsirolimus
 MTOR
 Akt pathway
 0.247
 8.85 × 10−3
PD 98059
 MAP2K1–2
 MAPK pathway
 0.241
 8.73 × 10−3
LBH589
 HDAC
 HDAC
 0.237
 1.49 × 10−2
GSK461364
 PLK1
 Cell cycle
 0.202
 1.29 × 10−2
TGX-221
 PIK3CB
 Akt pathway
 0.152
 2.94 × 10−3
Vorinostat
 HDAC
 HDAC
 0.075
 3.31 × 10−3
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between pairs of cell lines that lie within a threshold distance in the space
of model variables. In the case of lapatinib, a standard-of-care drug for
combination therapy (49) or in patients who relapse after trastuzumab-
based therapy (50), we identified one resistant cluster (R1) and two
sensitive clusters (S1 and S2) (Fig. 6A). The sole sensitive HR+ line
fell into S1 (MDA-MB-175, blue arrow), and the sole resistant HER2amp

line fell in R1 (MDA-MB-361, red arrow). The variables that differentiate
R1 from S1 and S2 were pERK, which in MDA-MB-175 was significant-
ly higher than in other HR+ lines (P = 1.4 × 10−4), and pErbB2, which in
MDA-MB-361 was lower than in other HER2amp lines (P = 4.0 × 10−4).
The abundance of pc-Met and pErbB3 distinguished S1 from S2 (fig.
S8). The abundance of pERK and pErbB2 are markers of sensitivity to
lapatinib (Fig. 6B) and were also the variables that identified the single
TNBC line (MDA-MB-453) that is sensitive to afatinib, another approved
ErbB2 inhibitor (Fig. 6C, black arrow). MDA-MB-453 lay at the intersec-
tion between the R1 cluster and the S1 and S2 clusters (black arrow, Fig.
6A), and it had a significantly higher pErbB2 abundance than the other
TNBC lines (P = 3.6 × 10−6). Thus, we found that pathway activity (rep-
resented by pErbB2 and pERK abundance) yielded higher q2 for models
of ErbB-targeted drugs than did HER2amp status (Fig. 6D). These results
showed that biochemical profiles can identify drug-sensitive outliers among
HR+ and TNBC lines.
www.SCIENCESIGNALING.org 24 S
DISCUSSION

Here, we showed that biochemical profiles
of basal and ligand-stimulated signaling
pathways can be used to construct PLSR-
based models that predict responsiveness
to 23 of 43 targeted drugs examined by
Heiser et al. (20). In contrast to many ge-
nomic classifiers of drug sensitivity in breast
cancer, our models predicted continuous
GI50 values, which rarely divide cleanly into
resistant and sensitive classes. We found that
signaling profiles yielded more predictive
models fordrugs targeting intracellular targets
than did basal profiles. This seems logical
because signaling profiles report on network
activity; however, larger data sets are neces-
sary to assess the statistical significance of
the differential predictive power of basal
and signaling profiles.

Inspection of PLSR model variables re-
vealed which features of signal transduction
biochemistry were predictive of sensitivity
to which drug. In many cases, the number
of variables was small (5 to 12). Surprising-
ly, our data indicated that target abundance
or target phosphorylation rarely correlated
with the sensitivity of cells to a drug against
that target, except in the case of ErbB2,
which also had a positive correlation between
abundance and basal phosphorylation. In this
sense, ErbB2 is not a prototype for a protein-
based biomarker, but rather a special and like-
ly rare exception. More generally, we found
that classification of breast cancer lines using
a dichotomous high-low score for receptor
abundance obscured the graded variation
that is observed across cell lines. Unsuper-
vised clustering divided lines into clusters primarily on the basis of the
abundance or ligand responsiveness of receptors such as c-Met, FGFR4,
and IL-6R, none of which are in the subtype definitions of TNBC, HER2amp,
or HR+, but which are implicated in drug resistance (51–53) or are the
targets of investigational antibody-based therapeutics (54–58). Moreover,
large-scale sequencing of HER2amp tumors also shows that the subtype
constitutes several distinguishable classes (22). Subdividing the HER2amp

subtype could be beneficial clinically if future studies establish a correla-
tion of genetic and biochemical profiles with preexisting or acquired
resistance to trastuzumab, currently the most important drug for this type
of tumor.

Breast cancers are frequently mutated at PIK3CA or PTEN loci (1, 22),
and many drugs targeting the PI3K/Akt pathway are in active clinical de-
velopment (47). Unfortunately, neither mutational status nor subtype is
very predictive of sensitivity to these drugs. However, we could build pre-
dictive models for most drugs targeting the PI3K/Akt pathway based on
network profiling. Nevertheless, even among drugs that supposedly have
the same molecular target, the models differed, which may be due to dif-
ferences in either the isoform specificity or the off-target activities of the
individual drugs. Rather than the mutational status of PIK3CA or PTEN,
or the abundance of pAkt, we found that for a subset of PI3K/Akt-targeted
drugs, responsiveness to the ligand HRG had significant predictive value,
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Fig. 4. Response to HRG and ErbB3 abundance are key predictors for response to drugs targeting the

PI3K/Akt pathway. (A) Quality of the predictions for the drugs targeting the PI3K/Akt pathway using
their basal and signaling (based on maximal response) profiles. Nonsignificant predictions (NS) are set
to zero. (B) Projection of cell lines according to the pERK response to HRG and cumulative amounts of
ErbB2 and ErbB3 overlaid with the GI50 value to GSK2126458 (red, resistant; blue, sensitive). (C) Quality
of the prediction for drugs targeting the PI3K/Akt pathway using a linear model with a single variable or
the variables ErbB3 and ErbB2.
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as did the abundance of ErbB2 and ErbB3, which are easier to measure
in tumor samples. These results suggest that pathway activity or the
potential for inducibility is an effective indicator of drug sensitivity. Be-
cause predictors are correlative, we cannot say precisely how respon-
siveness to the ErbB2-ErbB3 ligand HRG and sensitivity to PI3K/Akt
inhibitors are linked mechanistically, but HRG and ErbB3 are both im-
plicated in breast cancer biology (59, 60). Additional work with clinical
samples is required to determine whether such a biomarker will be prac-
tically useful.

In many cases, our ability to predict GI50 values from pathway data
is improved by including information about the cell line’s mutational
status. Remarkably, prediction of sensitivity to drugs that target ErbB2
(such as lapatinib) or ErbB1 (such as gefitinib) is also improved by adding
data on PIK3CA or PTEN mutational status. These findings highlight the
value of including both genomic and biochemical data in predictors of
drug sensitivity and demonstrate a need for better understanding of dys-
regulated Akt signaling in breast cancer cells. Our data also suggest that
www.S
PIK3CA or PTEN mutational status may act as a cofounding factor rather
than a predictor of responses to targeted drugs.

The experiments described here serve as proof of principle to study
drug response across panels of cells lines based on systematic biochem-
ical analysis of basal and induced cell states. The protein profiles in the
current work contain only 50 to 200 variables per cell line, many fewer
than could be collected by whole-genome sequencing or mRNA expres-
sion profiling (although this may change with high-throughput mass spec-
trometry). Nonetheless, our results suggest that even a limited number of
protein measurements centered on pathways targeted by drugs can be highly
informative. If we compare this work to the transcriptional and genetic
profiling in Cancer Cell Line Encyclopedia (26), we find that our models
have an equal or better Pearson’s correlation for the predictions of all four
drugs common to our work. We speculate that the wide range of genetic
changes that occur in cancer are canalized into a simpler set of changes
at the level of signal transduction networks. If so, systematic mechanis-
tic analysis of signaling pathway status across diverse cancer genotypes
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tions of drug response. (A) Quality of the prediction for models stratified
according to subtype (TNBC versus HR+/HER2amp) for the pan-PI3K in-
hibitor GSK2126458. Predictions by subset are shown according to a mod-
el built on just the indicated subset of cell lines (yellow and purple bars) or
all of them (black bar). (B) Distribution of GI50 values for GSK2126458 by
subtype. (C and D) Correlation of ErbB3 (C) and pERK (D) with
GSK2126458 GI50 values for each of the three cancer subtypes. A dashed
line shows a nonsignificant correlation. (E) Quality of the prediction of
models stratified according to mutational status of PIK3CA and PTEN
and PTEN; Mut, cell lines with mutations in either or both of PIK3CA and
PTEN. Nonsignificant predictions (NS) are set to zero. (F) Projection of the
abundance of pc-Met and VEGFR1 overlaid with the triciribine GI50 val-
ues only for cell lines wild type for PIK3CA and PTEN (red, resistant; blue,
sensitive). Dashed lines show the detection threshold for each measure-
ment. (G) Quality of the prediction of models stratified according to mu-
tational status of PIK3CA and PTEN (WT versus Mut) for drugs targeting
the PI3K/Akt pathway. Only those drugs for which stratification improves
prediction are shown.
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should substantially simplify our under-
standing of tumorigenesis. Of course, ge-
nomic and transcriptional data are easier
to collect from patients than are proteomic
measurements, but we found that, in some
cases, very specific proteomic data were pre-
dictive of drug response. Combining such
proteomic data on signaling networks with
genomic data already routinely collected in
the clinic might yield hybrid clinical bio-
markers that could improve therapy selection
in cancer patients.
MATERIALS AND METHODS

Cell culture
All cells were obtained from the American
Type Culture Collection and grown accord-
ing to recommendations, except for BT-474,
MCF7, MDA-MB-415, and MDA-MB-436.
All culture conditions are provided in table
S2. All cells were free ofMycoplasma. Cells
were plated either in 15-cm dishes or in
96-well dishes to achieve about 75% con-
fluency at the time of lysis. Cells were grown
for 24 hours and then starved in serum-free
medium without additives for 18 hours be-
fore exposure to ligands for signal profiling
or lysis for basal profiling.

Extracellular ligands
All ligands used in this study are listed in
table S4. Ligands were dissolved accord-
ing to recommendations from the manufac-
turer at 100 µg/ml, except for IFN-a, which
was supplied as a solution of 106 U/ml. For
treatment of each cell line with final con-
centrations of 100 and 1 ng/ml (103 and
10 U/ml for IFN-a), ligands were further
diluted into 10× treatment solution with the
same medium used for serum starvation.

ELISA—Basal profile
lysate collection
Cells were plated in 9× 15-cm dishes, washed
with 12 ml of phosphate-buffered saline
(PBS), and drained for 30 s. Two plates were
treated for about 5 min with 1.5 ml of 0.05%
trypsin (Corning, 25-052-CI) until cells de-
tached from the plates. Trypsin was stopped
with 8.5 ml of 10% fetal bovine serum in
PBS and gently pipetted up and down until
it was in single-cell suspension. Cells from
each plate were counted in duplicate using a
Cellometer Auto T4 (Nexcelcom). Seven
plateswere lysedwith 1ml of lysis buffer con-
taining the following: Mammalian Protein
ExtractionBuffer (M-PER;ThermoScientific,
78501) supplemented with protease inhibitor
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361 not available for afatinib). (D) Quality of the prediction for drugs targeting ErbB1 or ErbB2 using a
linear model with a single variable or the variables pERK and pErbB2. Nonsignificant predictions (NS)
are set to zero.
eptember 2013 Vol 6 Issue 294 ra84 9



R E S E A R C H A R T I C L E
cocktail (Sigma-Aldrich, P2714), 1 mM sodium orthovanadate (Sigma-
Aldrich, S6508), 5 mM sodium pyrophosphate (Sigma-Aldrich, 221368),
50 mM oxophenylarsine (EMD Biosciences, 521000), and 10 mM bpV
(phen) (EMDBiosciences, 203695). Lysed cells were scraped off the plate,
collected in microcentrifuge tubes, and incubated on ice for 30 min. Mem-
branes and cell debris were sedimented by centrifugation at 20,000g for
10 min at 4°C, and the supernatants were pooled, aliquoted, and subse-
quently stored at −80°C.

ELISA—Ligand response lysate collection
Cells were plated in two 96-well plates and treated with growth factors for
10, 30, or 90 min. The cells were washed in 200 µl of cold PBS and lysed
in 30 µl of the M-PER lysis buffer with the inhibitors listed above. Plates
were sealed, rocked on ice for 15 min, and stored at −80°C.

ELISA measurements
All ELISA assays used for this study are listed with their targets in table S3.
For protein measurements, 384-well, black, flat-bottomed, polystyrene,
high-binding ELISA plates (Corning, 3577) were incubated overnight at
room temperature with capture antibodies (table S3) and then blocked
with 2% bovine serum albumin in PBS for 1 hour. Plates were washed
four times with 0.05% Tween 20 in PBS (PBS-T) and then incubated with
lysates and recombinant protein standards for 2 hours at room tempera-
ture. After each antibody incubation, plates were washed four times with
PBS-T. ELISAs were incubated with primary and secondary antibodies for
2 hours and 1 hour, respectively. All ELISAswere visualizedwith SuperSignal
ELISA Pico Chemiluminescent Substrate (Pierce, 37069), and luminescent
signal was measured with an EnVision Plate Reader (PerkinElmer).

Data from ELISA measurements were extracted using MATLAB Sta-
tistics Toolbox. Briefly, raw data were background-subtracted (raw values
from assay buffer were subtracted from raw values of each sample). A
dilution series of recombinant protein (standard curve) was used to convert
raw signal into known protein concentration (pg/ml). A linear best-fit line
was calculated on the basis of the standard curve, then background-subtracted
values for each sample were converted into pg/ml using the linear equation
(y = mx + b) of the standard curve. Regressed data were multiplied by the
dilution factor for each sample, then mean and SE of the mean values were
calculated for at least four technical replicates for the basal profile mea-
surements and two biological replicates for the ligand response measure-
ments. Data above or below the range of detection were set to the upper or
lower detection limit, respectively. For steady-state protein levels, ELISA
measurements (pg/ml) were normalized to the number of cells in the lysate
(cells/ml) to get picograms of protein per cell.

High-throughput microscopy—Ligand response
Experiments were performed as previously described (61). In short, cells
were plated in 6× 96-well plates and treated with growth factors and
cytokines for 10, 30, or 90 min. The cells were fixed for 10 min at 25°C
in 2% paraformaldehyde. Plates were washed with 200 µl of PBS-T and
stored at 4°C until assaying. Cells were permeabilized with 100 ml of
methanol for 10 min at 25°C, washed with 200 ml of PBS-T, and blocked
with 40 ml of Odyssey Blocking Buffer (OBB; LI-COR) for 1 hour at
25°C. Cells were treated with 40 ml of primary antibody diluted 1:400
in OBB, sealed, and incubated overnight at 4°C on rocking platform. Cells
were washed twice with 200 ml of PBS-T and treated with 40 ml of sec-
ondary antibody diluted 1:2000 in OBB incubated for 1 hour at 25°C.
Cells were washed in 200 ml of PBS-T, then 200 ml of PBS, and were
stained with 40 µl of Hoechst 33342 (250 ng/ml) (Invitrogen) and 1:1000
Whole Cell Stain (blue; Thermo Scientific) in PBS. Cells were washed two
times with 200 ml of PBS and imaged in an imageWoRx high-throughput
www.SC
microscope (Applied Precision). Data were extracted using ImageRail and
stored for processing in semantic data cubes (61). All antibodies used for
high-throughput microscopy are listed with their targets in table S5.

Clustering parameters
The clustering in Figs. 1C and 2A was made using the MATLAB statis-
tical toolbox. The distance used in the algorithm is the correlation distance
(that is, 1 − R, where R is the Pearson’s correlation), and the “average”
linkage was used to draw the clustering tree.

Prediction algorithm
Our prediction uses a linear model based on a PLSR with variable selec-
tion based on variable importance projection (62). All codes are written in
MATLAB using the standard embedded function such as “simpls” for
building the PLSR model. The detailed description of the algorithm can
be found in text S1.
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