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SUMMARY 

Mutation and over-expression of Receptor Tyrosine Kinases or the proteins they regulate serve  

as oncogenic drivers in diverse cancers. To better understand RTK signaling and its link to 

oncogenesis, we used protein microarrays to systematically and quantitatively measure 

interactions between virtually every SH2 or PTB domain encoded in the human genome and all 

known sites of tyrosine phosphorylation on 40 Receptor Tyrosine Kinases and on most of the 

SH2 and PTB domain-containing adaptor proteins. We found that adaptor proteins, like RTKs, 

have many high affinity bindings sites for other adaptor proteins. In addition, proteins that drive 

cancer, including both receptors and adaptor proteins, tend to be much more highly 

interconnected via networks of SH2 and PTB domain-mediated interactions than nononcogenic 

proteins. Our results suggest that network topological properties such as connectivity can be used 

to prioritize new drug targets in this well-studied family of signaling proteins. 

INTRODUCTION 

 Receptor Tyrosine Kinase (RTK) signaling networks evolved in Metazoans to process 

extracellular cues and elicit cellular responses such as differentiation, proliferation or migration. 

Canonical RTK signaling is initiated when a ligand binds to the extracellular domain of its 

cognate receptor, inducing receptor dimerization, activation of the intracellular tyrosine kinase 

domain, and auto-phosphorylation of intracellular tyrosine residues(1). These phosphotyrosine  

(pTyr) residues then serve as recruitment sites for one or more of the approximately 120 SH2 

domains(2) and 44 PTB domains(3) encoded in the human genome. Upon recruitment, many 

adaptor proteins bearing SH2 and PTB domains themselves become phosphorylated on tyrosine 

residues by active receptor or cytosolic tyrosine kinases. This second set of phosphorylation 
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events leads to the recruitment of additional SH2 and PTB domain-containing proteins(1). For 

example, the binding of GRB2 to pTyr427 of SHC1 (or pTyr317 in the p52 SHC1 isoform)  

induces activation of the RAS/MAPK kinase cascade(4). Similarly, binding of 

phosphatidylinositol 3-kinase (PI3KR1, p85) to pTyr612 of IRS1 initiates signaling through the 

PI3K/AKT cascade in cells exposed to insulin or insulin-like growth factors(5). 

RTKs share a similar set of interactors and activate many of the same response pathways, 

including RAS/MAPK and PI3K/AKT cascades(1). They do not, however, necessarily elicit the 

same phenotypes. For example, both EGFR and NTRK1 induce MAPK signaling in PC12 cells, 

but EGFR triggers proliferation whereas NTRK1 promotes differentiation. Both of these 

phenotypes are dependent on ERK activity(6). This phenomenon is also observed clinically, 

where only a subset of RTKs have been shown to drive cancer despite sharing many downstream 

pathways(7). Current qualitative representations of signaling networks as linear cascades are 

inadequate to explain the diverse phenotypes that arise downstream of different RTKs. 

Aberrant signal processing by RTK networks has been causally linked to cancer 

development, maintenance, and progression in many human tissues. Well-studied examples 

include overexpression of ERBB2 in breast cancer(8), KIT in testicular germ cell tumors(9), and 

MET in gastric cancer(10). Constitutive activating mutations of RTKs, such as those observed in 

the RET kinase(11, 12) in multiple endocrine neoplasia type 2 or KIT in gastrointestinal stromal 

tumors(13) are also capable of driving oncogenesis. Similarly, mutation or overexpression of 

SH2 domain-containing cytosolic proteins such as ABL kinase(14) or the PI3K p85 regulatory 

subunit(15) can also drive cancer, in these cases by inducing constitutive enzymatic activity that 

is decoupled from upstream signaling events. 
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Recently, Barabási and colleagues advanced a mathematical argument that network 

driver nodes, the nodes that control information flow in a network, should not be highly 

interconnected(16). If this notion is extended to cancer, in which signaling networks are 

substantially altered or rewired, we would expect that proteins driving oncogenesis would not be 

highly interconnected. We sought to determine experimentally if there is indeed a link between 

network connectivity and the propensity of a protein to drive cancer. In making this 

determination, we cannot rely solely on literature-derived interaction networks(17, 18) as they are 

confounded by study bias(19, 20). Specifically, oncogenic proteins are more intensively studied 

than non-oncogenic proteins, potentially resulting in a bias in terms of number of binding 

partners. As a means to collect systematic pTyr-mediated interaction data, in vivo methods like 

the yeast two-hybrid system are not suitable as they do not allow for control over post-

translational modification events(21). Systematic co-immunoprecipitation coupled with mass 

spectrometry is also problematic, as many interactions mediated by tyrosine phosphorylation are 

transient, with half lives on the order of seconds, and any particular cell type expresses only a 

subset of the proteome(22). Previous systematic research on the binding specificity of SH2/PTB 

domains has therefore been performed using phosphorylated peptides and in vitro binding 

assays.  For example, pioneering studies of this type involving peptide libraries uncovered 

consensus binding motifs for a variety of SH2 and PTB domains(23–25).  It is now apparent, 

however, that these motifs are simplified views of in vivo selectivity and that specificity is also 

defined by “anti-motifs” representing excluded contacts for SH2 domains(26), SH3 domains(27), 

and probably other modular interaction domains as well. As a consequence, it is very difficult to 

predict accurately whether an SH2 or PTB domain will bind to a particular sequence known to be 

phosphorylated in vivo. 
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To overcome these limitations, it is necessary to test interactions between binding 

domains and peptides bearing physiological sequences one at a time and in a noncompetitive 

setting. To perform such assays in an unbiased, high-throughput, and quantitative manner, we 

used protein domain microarrays(28). In brief, 134 purified recombinant SH2 and PTB domains 

were printed as microarrays in individual wells of 96-well microtiter plates. The arrays were then 

probed with fluorescently labeled phosphopeptides derived from known sites of tyrosine 

phosphorylation on human proteins. By probing the arrays with eight different concentrations of 

each peptide, full saturation binding curves were obtained, providing an estimate of the 

equilibrium dissociation constant for each biochemical interaction. Our previous work using this 

assay focused on nine RTKs: FGFR1, IGF1R, MET, NTRK2, PDGFRβ(29) and the four ErbB 

receptors(3, 30). In these studies, we found that the arrays correctly identify most previously 

reported interactions(3). In addition, they invariably highlight new interactions, many of which 

we validated biologically: they occur in nonengineered cells and play important roles in signal 

transduction(3, 30),(31–33). We now use this approach to systematically quantify, on a nearly 

proteome-wide level, interactions between SH2 or PTB domains and known sites of tyrosine 

phosphorylation on both human RTKs and the adaptor proteins themselves. We find a very high 

degree of connectivity that challenges conventional, linear views of receptor-adapter interaction. 

Moreover, RTKs and adaptor proteins that have been shown to play a causal role in cancer tend 

to mediate substantially more interactions than those that do not. This suggests that these 

connectivity profiles may provide insight into how networks are rewired and may help prioritize 

new targets for anti-cancer drug discovery. 

EXPERIMENTAL PROCEDURES 

A detailed protocol for preparing protein domain microarrays has been described previously(28). 
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Determining interaction affinity 

Following peptide binding, arrays were scanned at multiple PMT voltages on a Tecan LS400 

microarray scanner on both Cy5 and Cy3 channels. Spots with saturated pixels were eliminated. 

The remaining spots were fit to a line that allows for the conversion of all the Cy3 values 

measured at different PMT voltages to the same scale. The fold-over-background value of a 

titration was determined by taking the trimmed mean of the Cy3 values for each domain-peptide 

titration divided by the Cy3 values of the Thioredoxin control spots. The mean Cy3 value of the 

Thioredoxin control spots was then subtracted from the Cy3 value of the domain spot and the 

spots were normalized by the Cy5 value. 

Each domain was printed in quadruplicate in each well and the arrays were probed using eight 

different concentrations of each peptide, ranging from 5 µM down to 10 nM. These 32 data 

points were then fit to the following equation using MATLAB
®
’s robust fit function with 

bisquare weights: 

Fobs = Fmax[Peptide] / (KD + [Peptide])   Eq. 1 

where Fobs is the mean fluorescence of replicate spots, Fmax is the fluorescence at saturation, 

[Peptide] is the total concentration of phosphopeptide, and KD is the equilibrium dissociation 

constant. Robust fitting procedures are more resistant to the presence of outlier data resulting 

from missed spots, fluorescent debris or other aberrations (34). Only titrations with fold-over-

background values in the top 10% of the data and R
2 

values over 0.9 were kept. Replicate 

affinities were then averaged in log space. The MATLAB
®
 code used to perform the analysis is 

supplied in supplementary information. 

Determining oncogene status 
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Oncogene status for RTKs was determined using the Sanger Institute Cancer Gene Census (7, 

35). The Sanger list contains only those genes for which a strong causal link to cancer has been 

established. Since many SH2/PTB domain-containing proteins have no catalytic activity of their 

own, they serve principally to amplify and propagate signals from upstream proteins. For this 

reason, adaptors were assigned as having a role in cancer by their presence in a union of the 

Sanger list and other cancer gene lists (36–38) compiled by the Bushman lab 

(http://microb230.med.upenn.edu/links/genelist). 

Statistical tests for enrichment of binding 

To test against the null hypothesis that the distribution of connectivity is equivalent for both 

Oncogene and non-Oncogene classes, we performed the non-parametric Mann-Whitney U test in 

MATLAB
®
 R2011a (The MathWorks, Inc., Natick, MA). Only those interactions with 

dissociation constants below 1 μM were considered. 

RTK and adaptor expression in tumor samples 

cBio Cancer Genomics Data Server Matlab Toolbox v1.04 was used to retrieve mRNA 

sequencing data corresponding to 1437 tumors from breast cancer, colon and rectal 

adenocarcinoma(39) and clear cell kidney cancer collected by The Cancer Genome Atlas 

Network. We used a 1 read per kilobase of exon model per million mapped reads (RPKM) 

threshold to separate genes which are expressed. This threshold has been shown to correspond to 

1 transcript per C2C12 cell(40) and optimizes overlap with mass spectrometry results in HeLa 

cells(41). We consider this to be an upper bound estimate to the total number of potential 

interaction partners. 
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RESULTS AND DISCUSSION 

Data collection 

 We started by compiling a list of known sites of tyrosine phosphorylation on human 

RTKs and on all SH2 and PTB domain-containing proteins listed in the PhosphoSitePlus 

database(42). We restricted our studies to experimentally verified sites of tyrosine 

phosphorylation as nonphysiologically relevant sites, when artificially phosphorylated, may also 

bind SH2/PTB domains(43) and thereby confound any systems level conclusions drawn from the 

resulting data. We focused on 40 of the 53 Uniprot-annotated RTKs that had more than three 

phosphorylation sites to include only those receptors whose biology is sufficiently understood to 

enable systematic comparison. This resulted in a total of 729 unique phosphopeptides that we 

successfully synthesized, fluorescently labeled, and purified using high performance liquid 

chromatography (Supplementary Table 1). We then used each of the peptides to probe 

microarrays comprising virtually every human SH2 and PTB domain (Supplementary Table S2). 

The arrays were probed at eight concentrations of each peptide, ranging from 10 nM to 5 µM 

(see, for example, Fig. 1A). By repeating this process for each phosphopeptide we were able to 

generate a quantitative interaction map for the receptor (Fig. 1B). This process was repeated for 

all of the remaining RTKs to generate, for the first time, a global, systematic, and unbiased view 

of RTK recruitment (Fig. 1C). Larger versions of the connectivity diagrams for each RTK are 

available in Supplementary Figure 1. Only interactions with KD < 1 µM are included in these 

diagrams. SH2 domain-mediated interactions of lower affinity have been shown to be 

physiologically relevant intramolecularly, but it is generally accepted that most bona fide 

intermolecular interactions exhibit dissociation constants below 1 µM(44–46). 
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As with any assay, one invariably encounters false positives and false negatives. With 

protein domain microarrays, the most frequent source of false positives is nonspecific binding 

between peptide and domain, whereas false negatives likely arise from low surface activity of the 

domains, presumably because some domains denature on the slide surface or are preferentially 

immobilized in a way that blocks access to the binding site. To estimate the stochastic false 

positive rate, we conservatively assumed that domains having the lowest frequency of binding 

were actually inactive in our assay and exhibited no true-positive interactions (any interactions 

identified for these domains are by definition false positives). We observed that domains in the 

bottom 20% of the binding frequency spectrum accounted for 20 interactions out of the 37,490 

titrations performed on the domains, corresponding to a stochastic false positive rate of 5.33x10
-

4
.  If we extend this rate to all the titrations performed (195,546), we estimate that 104 of the 

2,808 interactions we identified are liable to be stochastic false positives (false discovery rate of 

3.72%).  As there is no reason to believe that false positive errors are observed preferentially 

with phosphopeptides derived from cancer-causing proteins, the primary conclusions of this 

study are not affected. 

Another potential limitation of our approach is that the current list of physiological sites 

of tyrosine phosphorylation in PhosphoSitePlus may be incomplete. This would be particularly 

problematic if non-oncogenic RTKs were less well annotated than oncogenic ones. To 

investigate this possibility, we used phosphotyrosine-directed mass spectrometry(30) to study six 

non-oncogenic members of the Ephrin class of RTKs – EphA2, EphA3, EphA4, EphB2, EphB3 

and EphB4. We overexpressed each receptor in HEK293T cells, a procedure that induced 

receptor auto-activation and phosphorylation in all six cases. Receptors were then 

immunoprecipitated using an anti-pTyr antibody and subjected to targeted and untargeted µLC-
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MS/MS. Using this approach, we were able to identify 32 out of the 38 known sites of 

intracellular tyrosine phosphorylation (84% sensitivity). Remarkably, we did not identify any 

sites of tyrosine phosphorylation beyond those already reported in the PhosphoSitePlus database 

(Supplementary Table S4). This suggests that the many high throughput, pTyr-directed mass 

spectrometric studies that have been used to populate PhosphoSitePlus are not biased against 

non-oncogenic receptors and that the existing list of tyrosine phosphorylation events, at least on 

RTKs, is nearly complete. 

Oncogenic RTKs are highly connected 

By examining the connectivity profile of the 40 RTKs at various affinity thresholds (Fig. 

2A), we sought to identify whether a link exists between connectivity and oncogenicity. We 

determined whether or not an RTK is an oncogene based on its inclusion in the Sanger Institute’s 

Cancer Gene Census(7) (http://www.sanger.ac.uk/genetics/CGP/Census/), which seeks to 

determine a strict causal (and not merely correlative) relationship between cancer development 

and mutation and/or overexpression of a given gene. Based on these assignments, we found that 

oncogenic RTKs have a significantly higher median connectivity in our interaction dataset than 

non-oncogenic RTKs. At an affinity threshold of 1 M, for example, the median number of 

binding partners is 21 for non-oncogenic RTKs and 56 for oncogenic receptors, corresponding to 

a ~2.5-fold difference in the number of interactions (Mann-Whitney U-test p=2.77x10
-5

).  Non-

oncogenic RTKs also have a median of six phosphorylation sites, whereas oncogenic RTKs have 

nine phosphorylation sites (Mann-Whitney U-test p=0.007), corresponding to a 50% increase. 

This indicates that the primary reason for the increased connectivity of oncogenic RTKs is the 

presence of more promiscuous pTyr docking sites and only secondarily an increase in the 

number of docking sites. For instance, the non-oncogenic receptor CSF1R, although it has twice 
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as many phosphorylation sites as NTRK3 (8 vs. 4), has far fewer high-affinity (KD<1 μM) 

binding partners (6 vs. 58). In addition, the RTK with the greatest number of phosphorylation 

sites in our study is the non-oncogenic ERBB4 with 16. ERBB4 has only 18 binding partners, 

however, which places it in the bottom 25% of the RTKs we studied. 

Many interactions annotated here may be of too low affinity to bind at appreciable levels 

to a receptor that is present at low surface density or at a low level of activation. When a cell 

becomes malignant, however, gene amplification or overexpression may make phosphorylated 

receptors (or adaptors) sufficiently abundant that low affinity interactions are enabled and 

downstream signaling activated. This notion is supported by the observation, in PC12 cells, that 

EGFR mediates proliferation when present at normal levels but differentiation when 

overexpressed(6). These phenomena cannot be captured in qualitative diagrams of signaling and 

highlight the need to think of these interactions as being contextually conditional and existing on 

a quantitative spectrum without a single fixed threshold. 

Adaptor-Adaptor Binding 

Focusing only on the initial recruitment of adaptors to RTKs provides an incomplete 

view of the full complexity of early RTK signaling. Adaptors can themselves become tyrosine 

phosphorylated and interact with each other, forming multi-protein complexes at the receptor. By 

systematically probing our SH2/PTB domain microarrays with phosphopeptides derived from 

334 known pTyr sites on adaptor proteins, we identified a dense network of interactions among 

the adaptor proteins themselves (Fig. 3A). For example, the well-studied tyrosine kinase ABL1, 

which is responsible for driving the development of chronic myeloid leukemia when fused with 

the protein BCR, is currently annotated to mediate 15 interactions through its SH2 domain(47). In 
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our study, we identified 53 biochemical binding partners, including known interactions with 

DAB1, ERBB2, PTK2 and SHC1(47).  Our data may also resolve some outstanding questions in 

the field. For example, it has previously been reported that the Vav1 SH2 domain binds to a 

phosphorylation site on BCR/ABL and that this interaction is critical for activation of Rac-1 and 

BCR/ABL-mediated leukemogenesis. Previous attempts to identify the site of binding by 

constructing a series of Tyr to Phe mutants, focusing in particular on the Vav1 consensus binding 

motif, were unsuccessful(48). Our data reveal an interaction between Vav1 and pTyr917 of 

BCR/ABL (Uniprot id: A9UF07), which was not included in the earlier mutagenesis 

experiments. 

RTK-mediated activation of the MAPK pathway is well studied (49, 50), but we 

nevertheless find many new interactions that impinge on this pathway. RTKs vary in their ability 

to recruit early signaling proteins in this pathway, such as SHC1, GRB2, and PTPN11. Here, we 

find that these adaptors have the potential to interact with many other signaling proteins as well, 

increasing the complexity of MAPK pathway activation (Fig. 3D). This view aligns well with the 

idea that RTKs function not as discrete molecular machines, as typically depicted, but as 

pleomorphic ensembles that are highly complex and dynamic with many rapidly interchanging 

states(22, 51).   

Oncogenic adaptors are highly connected 

To probe the relationship between connectivity and oncogenicity in the adaptor-adaptor 

layer of binding, we organized domains by sequence similarity (Fig. 4A)(52). The blue bars 

indicate how many peptides bind to each domain (in-links) and the green bars show how many 

binding partners interact with phosphorylation sites on the corresponding protein (out-links). 
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Simple inspection reveals a wide range of binding promiscuity within the SH2 and PTB domain 

families. For example, proteins in the SRC, HCK, and PI3K N-terminal families of domains have 

relatively high numbers of binding partners and are frequently annotated as oncogenes. When we 

sort the domains by the number of in-links and out-links, from least to most connected, it is clear 

that oncogenic proteins (red) are preferentially enriched among proteins with high in-

connectivity (median 20 vs. 8 in-links, Mann-Whitney U test p= 3.4x10
-3

), high out-connectivity 

(median 9 vs. 1 out-links, Mann-Whitney U test p=1.0x10
-4

), or both (Fig. 4B). Because the 

adaptors are likely to amplify signals downstream of RTKs, especially those without intrinsic 

catalytic activity themselves, we used an expanded definition of oncogene that incorporates 

additional cancer gene lists as well as the Sanger list (see Methods). 

The quantitative interaction data generated in this study (Supplementary Table 3) should 

prove generally useful in the fields of network modeling(53) and interaction prediction(54). With 

the caveat that our data necessarily include false positives and false negatives, we also hope that 

the novel interactions identified in these studies will aid efforts to uncover signaling pathways 

downstream of RTKs. To facilitate the use of our data, the supplementary information for this 

paper contains the annotated interaction list (Supplementary Table 3) and raw microarray image 

intensities as well as the MATLAB scripts used to fit the titration curves, perform statistical 

analyses, and generate figures (Supplementary Code). 

 Our work shows that the genes whose mutation or overexpression drives cancer tend to 

be highly connected hubs. Moreover, the most highly connected proteins in our networks are the 

primary targets of new anti-cancer drugs (e.g., erlotonib for EGFR(55), lapatanib for ERBB2(56), 

vandetanib for RET(57), sunitinib for KIT(58), and imatanib for ABL1(14)). Analogously, viral 

proteins preferentially target hub proteins during infection(59, 60). This combined evidence 
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suggests that disease states arise preferentially from the perturbation of network hubs and drugs 

should target these same hub proteins.  

In conclusion, we have generated a systematic map covering a substantial fraction of the 

potential interactions between SH2 or PTB domains and sites of tyrosine phosphorylation on 

RTKs and adaptor proteins. These interactions are very poorly represented in existing unbiased 

human interactomes(61, 62) despite extensive evidence they play essential roles in signal 

transduction. We observe a high degree of connectivity among RTKs and adaptor proteins, and 

among adaptor proteins themselves. This is in contrast to the usual depiction of receptor-

proximal signaling as a series of linear pathways connecting sites of tyrosine phosphorylation on 

RTKs to a few adaptor proteins and then to a few core signaling molecules such as ERK and 

AKT. Of course, the actual complexity of the resulting network in any particular cell type 

depends not only on the affinities of the interactions (as determined here) but also on the relative 

abundance of RTKs and SH2/PTB-containing proteins. mRNA sequencing data of 1430 diverse 

tumor types collected by the TCGA consortium shows that they express a median of 78% of the 

phosphotyrosine signaling proteins analyzed in this study. In fact, over half of these proteins are 

expressed ubiquitously (in >95% of the tumor samples; Supplementary Figure 2). Thus, it is 

highly likely that receptor and adaptor proteins combine to form a highly interconnected mesh 

with the potential to perform complex signal processing functions. 
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FIGURE LEGENDS 

Figure 1: Determining binding affinity for SH2/PTB domains to phosphopeptides.  (A) 

Example titration of 5 (6)-TAMRA-labeled phosphopeptide corresponding to the sequence 

encompassing KIT-pTyr900. Titrations highlighted in green correspond to previously-identified 

binding partners(63). Curves are colored according to affinity (see legend) (B) Total connectivity 

for phosphorylation sites of the oncogenic RTK, KIT. Red circles corresponding to 

phosphorylation sites, blue circles to SH2 domains, and yellow circles to PTB domains. Lines 

are colored according to affinity. (C) Visualization of the binding profile of the 40 RTKs 

analyzed in the study. RTKs are sorted in descending order by the total number of links with 

affinities lower than 1 μM. 

Figure 2: Oncogenic RTKs are enriched for binding partners. (A) Cumulative density 

distribution of RTK interactions at different affinity thresholds. Oncogenic RTKs (7, 35) in red 

have significantly more binding partners than non-oncogenic RTKs in grey; median of 56 vs. 21 

interactions with affinity less than 1 μM (Mann-Whitney U-Test p=2.8x10
-5

). (B) Example of 

connectivity between sites of tyrosine phosphorylation on the non-oncogenic RTK CSF1R and 

SH2/PTB domains.  
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Figure 3: Adaptors are densely interconnected. (A) Adaptor proteins displayed in a circle with 

the size of the band corresponding to protein length (64). Lines begin at sites of tyrosine 

phosphorylation and terminate in either a yellow triangle corresponding to a PTB domain or a 

blue triangle corresponding to an SH2 domain and are color coded according to affinity. (B) 

Visualization of the binding partners of ABL1 SH2 domain (in-links) and phosphorylation sites 

of ABL1 (out-links). (C) RTK activation of the MAPK cascade is a varied process that integrates 

binding of GRB2 to SHC1 and SHP2 as well as to the RTK.  (D) The combinatorial complexity 

of RTK activation of MAPK is liable to be even greater as GRB2, SHC1 and PTPN11 (SHP2) 

are also capable of binding other adaptors, as can be seen by the diagrams, as well as other RTKs 

(not visualized). 

Figure 4: Oncogenic adaptors are more highly promiscuous. (A) Phylogeny of adaptors 

shows that genetically related domains share similar binding profiles. For example the SRC class 

(SRC, YES1, FGR) of tyrosine kinases all show a large number of in-links. This can be due to 

sequence determinants of selectivity as well as the bias in the phosphoproteome to sequences that 

interact with the domain family. (B) Adaptors sorted according to the number of peptides with 

which they interact (in-links; the X axis) and the number of adaptors that interact with them (out-

links; Y axis). Oncogenic adaptors have both higher median in-links (20 vs. 8, Mann-Whitney U 

test p= 3.4x10
-3

) and out-links (9 vs. 1, Mann-Whitney U test p=1.0x10
-4

) than non-oncogenic 

adaptors. SH2 domains bind a higher median number of peptides (15.5 vs. 2, Mann-Whitney U 

test p=1.7x10
-6

) but share a similar number of out-links (Mann-Whitney U Test p>0.01). 



A B

C

KIT pTyr 900
ITK

31 nM
0 5000

CRKL

128 nM
0 5000

PIK3R2−N

15 nM
0 5000

CRK

54 nM
0 5000

STAT2

 
153 nM

0 5000

PIK3R3−N

15 nM
0 5000

SYK−NC

62 nM
0 5000

RASA1−NC

 
202 nM

0 5000

BLK

16 nM
0 5000

PLCG2−NC

76 nM
0 5000

SLA2

 
455 nM

0 5000

SRC

19 nM
0 5000

GRB7

84 nM
0 5000

STAT1

 
677 nM

0 5000

PIK3R3−NC

20 nM
0 5000

SH2D3C

85 nM
0 5000

TEC

 862 nM
0 5000

PIK3R1−NC

NCK2

51 nM
0 5000

FGR

 
133 nM

0 5000

0 5000
14 nM

N
or

m
al

iz
ed

 F
lu

or
es

ce
nc

e

Peptide Concentration (nM)

PDGFRB MET ERBB2 RET KIT FLT3 INSR NTRK3

FGFR1 FGFR3 FLT1 MST1R NTRK1 ERBB3 EGFR KDR

ALK EPHA2 ROS1 IGF1R FLT4 PDGFRA EPHA7 EPHA3

EPHB1 NTRK2 AXL TEK EPHB2 EPHB3 ERBB4 EPHA4

EPHA1 EPHA5 EPHB4 CSF1R FGFR2 TYRO3 MERTK ROR1

0 500 nM 1000 nM

KIT

Y5
53

Y5
68

Y5
70

Y7
03

Y7
21

Y7
30

Y8
23

Y9
00

Y9
36

ST
A

T5
A

ST
A

T6
ST

A
T1

ST
A

T4
ST

A
T2

ST
A

T3
ST

A
P1

TE
N

C
1

TN
S1

TN
S3

TN
S4

R
IN

1
SH

2D
5

SH
2B

1
SH

2B
2

SH
2B

3
SH

C
1

SH
C

3
PL

C
G

1

PL
C

G
2

B
C

A
R

3
SH

2D
3C

SH
2D

3A
FE

R
FE

S
C

R
K

C
R

K
L

M
A

TK
H

SH
2D

SH
2D

2A
SH

B
SH

F
SH

D
SH

E
FG

R
YE

S1
SR

C

HCK
LCK
LYN
BLK
SLA2
PTK6

PTPN6

PTPN11
ABL1
GRAP
GRB2
NCK1
NCK2

PIK3R1

PIK3R3

PIK
3R

2
C

H
N

2
ITKTXK
B

TK
TEC
B

M
X

SYK

ZA
P70

G
R

B
7

G
R

B
14

G
R

B
10

SH
2D

1A
SH

2D
1B

IN
PPL1

B
LN

K
LC

P2
D

A
PP1

VA
V1

VA
V3

VA
V2

R
A

SA
1

SH
3B

P2
JA

K
2

JA
K

3
SU

PT6H
C

B
L

A
N

K
S1A

A
N

K
S1B

G
U

LP1
N

U
M

B
N

U
M

B
L

D
A

B
1

D
A

B
2

A
PB

A
1

A
PB

A
2

APBA3
CCM2
DOK1
DOK2
DOK4
DOK6
DOK5
FRS3
IRS1
IRS4

APBB1

APBB2

APBB3
SHC2

APPL1
EPS8L2

SH2 Domain
PTB Domain

Figure 1: Determining binding affinity for SH2/PTB domains to phosphopeptides.
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Figure 2: Oncogenic RTKs are enriched for binding partners.
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Figure 3: Adaptors are densely interconnected.
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Figure 4: Oncogenic adaptors are more highly promiscuous.


