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Integrated Systems and Technologies: Mathematical Oncology

Comparing Signaling Networks between Normal and
Transformed Hepatocytes Using Discrete Logical Models

Julio Saez-Rodriguez1,2, Leonidas G. Alexopoulos1,2, MingSheng Zhang1, Melody K. Morris2,
Douglas A. Lauffenburger2, and Peter K. Sorger1,2

Abstract
Substantial effort in recent years has been devoted to constructing and analyzing large-scale gene and protein

networks on the basis of "omic" data and literature mining. These interaction graphs provide valuable insight
into the topologies of complex biological networks but are rarely context specific and cannot be used to predict
the responses of cell signaling proteins to specific ligands or drugs. Conversely, traditional approaches to
analyzing cell signaling are narrow in scope and cannot easily make use of network-level data. Here, we combine
network analysis and functional experimentation by using a hybrid approach in which graphs are converted into
simple mathematical models that can be trained against biochemical data. Specifically, we created Boolean logic
models of immediate-early signaling in liver cells by training a literature-based prior knowledge network
against biochemical data obtained from primary human hepatocytes and 4 hepatocellular carcinoma cell lines
exposed to combinations of cytokines and small-molecule kinase inhibitors. Distinct families of models were
recovered for each cell type, and these families clustered topologically into normal and diseased sets. Cancer Res;
71(16); 5400–11. �2011 AACR.

Introduction

The availability of high-throughput interaction data has led
to the creation of methods for summarizing and exploring
networks by using node–edge graphs. In these graphs, genes
or proteins are represented by nodes (vertexes) and interac-
tions by edges (3, 4). The underlying interaction data are
diverse and include manual or automated text mining of the
literature (5, 6), genetic interactions obtained from gene
deletion sets, and physical interactions identified by large-
scale mass spectrometry or 2-hybrid analysis (4, 7). Interac-
tions in node–edge graphs can be undirected (denoting an
unspecified interaction), directed but unsigned (denoting
substrate–product relationships), or directed and signed
(denoting both substrate–product and inhibition–activation
relationships); the latter are particularly useful because they
capture biochemical causality. For protein data, graphs com-
prising undirected edges are typically called protein interac-
tion networks (PIN), whereas those with signed directed edges
are known as protein signaling networks (PSN). Most work on
PINs and PSNs to date has focused on adding as much data as
possible, often from more than one organism or type of
experiment, so as to construct large networks with the great-
est possible scope and the greatest number of interactions per
node (increasing the "degree" of the network); the culmination
of this effort is a proposed "Human Interactome" covering all
known gene products (8).

In cancer biology, comparative analysis is the natural focus
of "conventional" low-throughput studies of signal transduc-
tion, with particular attention paid to differences in cellular
responses to ligands or drugs in different cell types. In most
cases, these differences reflect changes in the abundance or

Major Findings

Clustering arises from systematic differences in signaling
logic in three regions of the network. We also infer the
existence of a new interaction involving Jak-Stat and NFkB
signaling and show that it arises from the polypharmacol-
ogy of an IkB kinase inhibitor rather than previously uni-
dentified protein–protein associations. These results
constitute a proof-of-principle that receptor-mediated sig-
nal transduction can be reverse engineered by using bio-
chemical data so that the immediate effects of drugs on
normal and diseased cells can be studied in a systematic
manner.
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activity of signaling proteins (or of their substrates), features
that could in principle be depicted by the strength of an edge
in a network graph. However, existing PSNs and PINs do not
encode the activities of proteins in cells that have been
exposed to specific activators or inhibitors. A dearth of data
on context-specific interactions makes it difficult to compare
normal and diseased cells, or diseased cells from different
tumors. Cell- and state-specific information has been added to
network graphs using gene expression data (3, 7, 9), but few
attempts have been made to reconstruct comparative net-
works using biochemical data.
In this article, we attempt to combine concepts from global

network discovery and traditional biochemistry by construct-
ing comparative network models of signal transduction in
normal and transformed liver cells. Startingwith a prototypical
network derived from the literature [which we will refer to as a
prior knowledge network (PKN)], we first constructed a set of

all Boolean models compatible with the PKN, used the model
"superstructure" to guide the collection of biochemical data on
multiple nodes in the network across multiple cell types, and
then trained the superstructure against data to uncover under-
lying differences in signaling logic among cell types. The net
result is a computational representation of a signaling network
that focuses on activity rather than literature association or
physical interaction and that is explicitly comparative.

A first essential step in adding activity data to networks is to
convert PKNs into models in which it is possible to compute
input–output (I/O) characteristics (1). In this article, we use a
2-state (Boolean) logical formalism in which each node can
have only two states, 0 or 1, but having a 1 at the output can
depend on having a 1 at one of several inputs (an OR gate), all
inputs (an AND gate), or 0 and 1 inputs in any combination.
Boolean models have the advantage that they have no con-
tinuous free parameters and their topologies can be trained

Quick Guide: Model Formalism and Training against Data

We start with a prior knowledge network (PKN) comprising a "signed and directed" node-edge graph that depicts interactions
among proteins as arrows so that substrate–product and activation–inhibition relationships are captured: Raf!MEK!ERK for
example. The 78-node, 112-edge PKN in this article came from the Ingenuity database with manual additions. A PKN cannot be
compared directly with cell response data because a model is needed to specify input–output relationships. Here, we use a simple
Boolean formalism, in which the state of a node is either 0 or 1 ("off" or "on"), and nodes interact via AND/OR/NOT logical
operators. In this formalism, if epidermal growth factor receptor OR IR is active, then MAP/ERK kinase (MEK) is active, etc.
Conversion of a PKN into a Boolean model proceeds as follows. Network preprocessing specifies proteins to be measured or
perturbed experimentally (so-called designated nodes) and then compresses the PKN on the basis of 2 criteria (1): a) nodes that
are not directly or indirectly connected to designated nodes are eliminated (because we have no data on them; and b) cascades in
which undesignated nodes impinge on designated nodes are simplified; for example, if Raf and ERK are designated, but MEK is
not, then Raf!MEK!ERK is replaced by Raf!ERK. Logical expansion computes all possible combinations of logic gates
compatible with the compressed network. Each interaction in the PKN (hyperedges in graph theory) can give rise to multiple
logical connections, so that if 2 edges link into ERK (e.g., Raf!ERK and NFkB!ERK), we would generate 3 logical interactions: (i)
Raf!ERK, (ii), NFkB!ERK, and (iii) Raf AND NFkB!ERK. An OR gate (Raf OR NFkB!ERK) simply corresponds to (i) plus (ii).
In our compressed PKN, 32 nodes and 128 logical interactions (hyperedges) give rise to 2128 ¼ �1038 possible models, each of
which is evaluated against data. Training a family of possible models against data involves propagating the input signals along the
logical network until all nodes reach interconsistent values (a logical steady state); models are then compared with experimental
measurements. Raw data are processed so that arbitrary intensity measures from xMAP sandwich immunoassays are converted
into values between 0 and 1 on the basis of various standards, a procedure that we have previously described in detail (1). For
quantitative analysis of model/data match, the deviation [mean squared error (MSE)] between data and a specific model is

computed asMSE ¼ 1
nE

Ps
k¼1

Pm
l¼1

Pn
t¼1 BM

k;l;t �BE
k;l;t

� �2
, in whichBM

k;l;t 2 f0; 1g is predicted by the logical steady state of the
model and BE

k;l;t 2 0; 1ð Þ is the discretized data for assay l recorded at time t under the kth experimental condition. Values

incompatible with a logical steady state are penalized as though they represent a mismatch between simulation and
experimental data. We seek the simplest models consistent with data, using a bipartite objective function: Q ¼ MSE þ a
QS, in which QS is model size and a is an adjustable parameter. We have shown that models identified using this objective
function are similar in their numbers of edges and goodness of fit across a wide range of values for a (1); in this article, we set a¼
0.0001.
The training procedure consists of searching across 2128 models with the objective function by using a standard genetic

algorithm (2). Model training was iterated 50 to 100 times for each set of data. Because of the stochastic nature of the genetic
algorithm and the nonidentifiability of the models given data, different solutions were recovered each time. In common with
most work on network inference, we addressed nonidentifiability by analyzing families of models instead of single solutions; in
this work, models within 1%MSE of the best-fit model constituted the "consensus." For subsequent analysis, the distance between

2 sets of models j and k was computed as d2j;k ¼
Pn

i¼1 fj
i � fk

i

� �2
, in which fk

i is the frequency of the ith hyperedge in the kth

model set. Distances were normalized with respect to the distance between hepatocyte and AvgHCC models (Supplementary
Table S1).
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efficiently using data (1), a task that is harder with large
differential equation models (10). However, we recognize that
real biological systems exhibit dose response behavior that is
only poorly approximated by Boolean logic. Thus, a major
question at the outset of this work was whether the strengths

of Boolean modeling with respect to computational simplicity
would outweigh its weaknesses. It seemed possible that the
crudeness of the Boolean on/off approximation would over-
whelm any differences we might measure experimentally from
one cell type to the next. Conversely, success in creating

Primary hepatocytes
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Figure 1. Experimental design and
primary data. A, outline of the
experimental approach showing 5
ligand cues and their receptors, 16
intracellular "signals" assayed
using phospho-specific
antibodies and xMAP technology
(the relevant phosphorylated
residues are indicated, as are the
likely upstream kinases), and 3
small molecule kinase inhibitors.
B, dataset from human
hepatocytes. Rows represent
intracellular signals assayed
immediately prior to ligand
addition and 25 minutes
thereafter, and columns represent
different ligand combinations (see
legend). For each combination of
ligands, 1 of 3 kinase inhibitors
was applied, as well as all possible
combinations of them. Data are
color coded to highlight induction
(relative to basal activity).
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comparative models would constitute a proof-of-principle for
the approach.
We therefore applied Boolean modeling to distinguishing

patterns of immediate-early signaling in normal and trans-
formed cells, represented here by primary human hepato-
cytes and HepG2, Hep3B, Focus, and Huh7 liver cancer cell
lines. Liver cancer (which is dominated by hepatocellular
carcinoma [HCC]) is the third most common cause of cancer
death in humans (11) and is known to involve alterations in
the EGF-Ras-MAPK, AKT-mTOR, Jak-Stat, and NF-kB cas-
cades (12). Thus, we aimed to collect multivariate data on
the activities of these pathways in normal and transformed
hepatocytes. We show that it is possible to assemble pre-
dictive network models that are specific to each cell type,
cluster models based on topology, and uncover consistent
biochemical differences between transformed and normal
cells. By identifying an interaction missing from the starting
PKN, but supported by data, we also uncover a poorly
documented off-target effect of a drug being developed
for asthma and inflammation (13, 14). Our findings show
that discrete logical modeling can capture cell-type specific
biochemical relationships, raising the possibility of con-
structing large comparative models of signal transduction
in normal and diseased cells.

Materials and Methods

Data generation
HepG2 and Hep3B, HuH7, and Focus cells were plated in 96-

well plates coated with collagen type I (Becton Dickinson)
with 100 mL phenol-free Williams’ Medium E (WEM; Sigma-

Aldrich) with supplements (15). Freshly preplated primary
human hepatocytes were purchased from CellzDirect and
cultured overnight on collagen, starved for 6 hours in 95 mL
of WEM, exposed to kinase inhibitors for 40 minutes, and then
to ligands for 25 minutes. All cells were lysed in 90 mL of
manufacturer's xMAP buffer (Bio-Rad) and intracellular sig-
nals measured by using a Luminex Instrument (Luminex) and
16-plex phosphoprotein bead sets (Bio-Rad; see Supplemen-
tary Material). Different dilutions of cell extract were required
for all 16 signals to be in the linear range.

HepG2 and Hep3B cell lines were obtained directly from
American Type Culture Collection (ATCC); Huh7 and Focus
cells (16), which are not available from ATCC, were obtained
from Prof. JackWands (Brown University, Providence, RI). Cells
were expanded once to create master stocks from which work-
ing cultures were periodically established; no lines were serially
passaged longer than 3 weeks. ATCC cell lines are validated by
the provider (17); no testing was carried out on the other lines.
Freshly platedhumanhepatocyteswere tested for contaminants
as described in ref. 15.

Reagents
To minimize experimental variability, samples were pro-

cessed in parallel and common stocks of cytokines, inhibitors,
and assay reagents used throughout (see Supplementary
Materials). Recombinant Jak2 and IKK-2 obtained from Cell
Signaling Technology were preincubated with kinase inhibi-
tors for 5 minutes in manufacturer's buffer with 20 mmol/L
ATP and FLT3 as Jak2 substrate or Ikb as a IKK-2 substrate.
Phosphorylation was assayed by using a time-resolved
fluorescence plate reader (PerkinElmer Victor 3) and

Figure 1. (Continued ) C, data from
HepG2 cells following the same
design as in A. The intensity of
background color for each box
(yellow to red) indicates how the
proportion of tumor cell lines that
also responded to a particular
drug–ligand combination;
complete data can be found in
Supplementary Fig. S1. Data were
processed using DataRail
software (18).
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apparent IC50 calculated from the activity A, in which A¼ (Iþ
[drug]/IC50

H)�1 and H is the apparent Hill coefficient. Ki for
TPCA-1 was calculated by using the Cheng–Prusoff equation,
Ki ¼ IC50/(1 þ [ATP]/KM), in which KM (for ATP) was 0.43
mmol/L for Jak2 and 0.91 mmol/L IKK-2.

Data handling
Data were processed and visualized usingDataRail software

(18, 19), with xMAP measurements normalized to a value
between 0 and 1 (1).

Network construction and model calibration
The starting PKN was constructed with ProMoT (20) using

the database of Ingenuity Systems (21) supplemented manu-
ally. Modeling was then done using our MATLAB toolbox
CellNetOptimizer (CellNOpt; ref. 22).

Results

The dynamics of immediate-early signaling pathways were
probed by using a combinatorial experimental protocol (23):
primary human hepatocytes and 4 HCC lines were treated
with Interleukin (IL)-1a, IL-6, TGF-a, TNF-a, and insulin (15),
in the presence and absence of small-molecule kinase inhi-
bitors of IKK, MAP/ERK kinase (MEK), and phosphoinositide
3-kinase (P13K), and 16 intracellular signaling proteins were
then assayed in cell extracts using multiplex sandwich immu-
noassays (xMAP assays; Luminex Inc. Fig. 1 and Supplemen-
tary Fig. S1; ref. 15). Our use of kinase inhibitors and
phosphoprotein antibodies naturally focused the analysis
on the druggable kinome (24), but similar analysis with other
classes of drugs and signaling proteins is also possible. The
experiments generated 5 sets of ligand-response data (for
HepG2, Focus, Hep3B, and Huh7 cell lines; "hepatocytes" refers
to primary human hepatocytes); a sixth dataset (AvgHCC) was
synthesized by arithmetically averaging data from the 4 tumor

lines and attempts to capture biochemistry common to all cell
lines.

All Boolean models compatible with a PKN of receptor-
mediated signaling that included 78 nodes and 112 interac-
tions was processed using freely available software of our own
design, CellNetOptimizer (CellNOpt; ref. 1). This yielded an
ensemble of approximately 1038 models having 128 AND or
OR gates with different connectivity or logic. The ensemble of
models was compared with each of 6 sets of experimental data
(representing 5 cell types and the average) using a bipartite
objective function that minimized the deviation between
model and data while penalizing model size (Fig. 2). For
any single dataset, optimization returned multiple models
that differed slightly in topology and logic but had nearly
the same value of the objective function (therefore making
them indistinguishable with respect to data). Such "noniden-
tifiability" is common in network inference, and we therefore
retained a family of best-fit models for each cell type differing
by 1% in goodness of fit (see Quick Guide box for details).

Because Boolean models lack continuous parameters (akin
to the rate constants in an differential equation network), it is
not necessarily true that training will yield a model having a
substantially better fit to data than the PKN, but this was the
case with our data and models: The untrained ensemble
containing all possible interactions and logic exhibited a poor
fit (39%–47% MSE error across all datasets, Fig. 3), whereas
families of trained models exhibited much better fit (9%–13%
MSE error, see Fig. 3 and Supplementary Fig. S2). We carried
out cross-validation and statistical tests to show that trained
models were predictive of real data and were nonrandom
(Supplementary Figs. S3–5). Moreover, models trained against
individual HCC cell lines were all better than the starting
ensemble at predicting AvgHCC data (which was not used in
training; 10%–14% MSE error, Fig. 3A). When the fit between
models and data corresponding to individual ligands or
biochemical assays was examined, levels of error were

Generic 
network

Graph Model

Scaffold of
logical models

Specific networks

CellNOpt Cell response
data

0.46 0.48N.A. 0.11 0.095

Process Train to

Only HCC

0.15 0.17
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Only primary New link
Add links

that lower error

Drug-target analysis
disease classifiers

comparative network analysis

Both

0.10 0.08

Error 

Connectivity

high high low low

Literature
database

Figure 2. General workflow and
goodness of fit of the cell-specific
models. Schematic of workflow of
model assembly, training,
validation, and extension. A PKN
derived from interaction data is
imported into CellNOpt and
converted into an assembly of all
possible logical interactions. The
assembly is then trained against
experimental data, generating
cell-specific models having lower
MSE error. In general, this involves
removing interactions present in
the PKN that are not supported
by the data. Interactions absent
from the PKN can then be added
to see whether they reduce
residual error (green line). Once a
satisfactory model is found, it is
analyzed to identify differences
among cell lines.
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relatively low except in the case of p53 and IRS1s, which
exhibited poor fits across all conditions (Fig. 3B and Supple-
mentary Fig. S6). This almost certainly arises because the PKN
represents p53 biology in an imprecise manner and annota-
tion of IRS1 modification is incomplete. These are areas in
which improved PKNs would clearly be useful. Nonetheless,
we conclude that model training recovers substantially better
network representations than the starting PKN.

Signaling network properties determined from
data-trained logical models
In our procedure, training a PKN-based Boolean model

against data improves the goodness of fit by removing unused
edges. However, connectivity varied significantly with cell
type: 85 of 128 possible gates were present in the superposition
of all models in all cell types (involving �90% of the interac-
tions not removed in the preprocessing), but only 7 gates were
common to all models (Fig. 4 and Supplementary Fig. S7). We
therefore concluded that the primary deficiency of the litera-
ture-derived PKN with respect to our data is not the presence
of true false-positive interactions (because some support can
be found for most edges in data) but rather an absence of cell-
type specificity.
To compare the topologies of models for all 6 datasets, we

computed pairwise distances by enumerating edges that
differed between averaged best-fit models (see Materials
and Methods and Supplementary Table S1 for details).
HCC-derived models clustered together, with models built
from AvgHCC data in the middle of the cluster, and well
separated from models of primary hepatocytes (Fig. 5A).
Models of Focus cells were farthest from primary cell models
and HepG2 models were closest, in agreement with a classi-
fication of HCC lines proposed previously (25–27; Fig. 5B).
Moreover, the pattern of clustering derived from network
topology was generally similar to the pattern computed from
transcriptional profiles. Although the goal of logical modeling

is not to generate cluster diagrams (being focused instead on
the biochemistry of signal transduction), the similarities
between clusters generated using transcript profiling and
logical models suggest that the biochemical processes covered
in our networks are representative of broader differences
across cell lines.

Pathway differences in signaling networks among
primary and transformed cells

Next, we asked which interactions or logical gates were
consistently present or absent when all possible models for
one cell type were compared with all models of another cell
type. This is a conservative approach that accounts for the
inability of training to uniquely specify a model for each cell
type on the basis of available data. We observed that 1
interaction was absent from all models of HCC cells although
being present in all models of primary hepatocytes, whereas 6
interactions had the opposite property, being present only in
models of HCC cells (Fig. 6). These differential interactions
affected 3 regions of the signaling network. First, whereas the
epidermal growth factor receptor (EGFR) ligand TGF-a
caused ERK activation in all cell types, upregulation of
Hsp27-S78 phosphorylation (presumably by PRAK kinase,
which lies downstream of ERK) was observed only in primary
cells (differential interactions 1–2). In 2 of 4 HCC cell lines
(Focus and Huh7), Hsp27-S78 was phosphorylated to a sig-
nificant degree, but it was p38- rather than ERK dependent
(Supplementary Fig. S7). These findings are consistent with a
reported association between low levels of Hsp27-S78 phos-
phorylation and tumor progression in HCC; our data show
that the situation is more complex than previously thought
(28), potentially involving a switch in Hsp27 kinases. A second
significant difference between primary and HCC cells involved
a change in the inferred logic of the IKK–NF-kB pathway: In
primary hepatocytes Ikb-S32/S36 phosphorylation (a signal
for Ikb degradation and consequent nuclear localization
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of NF-kB) required TNF-a and an activator of PI3K such as
TGF-a (differential interactions 3–4). In contrast, in HCC lines
only TNF-a was required, implying differential control over
canonical NF-kB–mediated signaling.

The third significant difference involved phosphorylation
of PI3K/AKT and GSK3-S9/S21 in insulin-treated HCC cells
but not in primary hepatocytes (differential interactions 5–
8). AKT is a potent prosurvival kinase, and its phosphoryla-
tion of GSK3 on S9/S21 is known to downregulate GSK3
activity and promote nuclear localization of b-catenin,
NFAT, and other progrowth factors (29). Insulin receptor
(IR) substrate 1 (IRS1) is overexpressed in HCC cell lines (30),
and it is possible that this shifts IR signaling (or signaling by
insulin-like growth factor receptors, which are also present
in these cells) from a metabolic function in normal liver (31)

to a prosurvival function in tumors that involves elevated
PI3K/AKT and GSK3 phosphorylation. Increased AKT activ-
ity is also expected in tumors due to downregulation of
proteins such as the p85 subunit of PI3K, a common feature
of HCC (32).

Overall, we conclude that direct comparison of Boolean
models was successful in identifying activity-dependent dif-
ferences among normal and diseased cells that are hard to
capture in PINs and PKNs assembled from physical interac-
tion or steady-state proteomic and expression data. At the
same time, we note that the Boolean models in this article
capture signaling at a single time point only, and only describe
ligand-driven changes in phosphorylation. The absence of an
IR!PI3K link in the inferred map for hepatocyte signaling
(despite the known function of IR in the liver; ref. 32) might
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arise because basal levels of AKT phosphorylation are high in
these cells, making it difficult to detect ligand-dependent
superactivation, or because we assayed cells at the wrong
point in time (methods for incorporating time-series data into
calibrated Boolean models are in development). However,
Boolean modeling correctly inferred an EFGR!PI3K link in
both transformed and primary cells and follow-up experi-
ments suggest that there is indeed a greater propensity of
tumor cells to respond to insulin by activating AKT.

Identification and testing of model-inferred novel
pathway interactions
The model training described above focused on eliminating

interactions present in the PKN but not supported by data.
However, it is likely that PKNs also lack interactions that are
supported by data. Indeed, we observed that the single largest
error in all models with respect to data involved an observed
inhibition of Stat3-Y705 phosphorylation by the IKK inhibitor
TPCA-1 under conditions of IL-6 stimulation (Fig. 3B). TPCA-1
is reported to be a potent and selective inhibitor of human
Ikbkinase-2 (IC50¼ 18 nmol/L for IKK-2 and 400 nm for IKK-1)
and was originally identified by GlaxoSmithKline in a drug
discovery effort focused on rheumatoid arthritis and airway
inflammation (13, 14). The inhibition of Stat3-Y705 phosphor-
ylation by TPCA-1 can be explained in a Boolean model by
adding an interaction between IKK and Stat3 (see Fig. 4); this
reduced the MSE error of all model families by approximately
5%. Whereas an IKK!Stat3 edge might represent a physical

interaction, an alternative explanation is that prior knowledge
about TPCA-1 is incorrect and the drug actually inhibits Jak2,
the known kinase for Stat3. To distinguish among these
possibilities, we carried out in vitro activity assays of purified
Jak2 and IKK-2 in the presence of TPCA-1 or BMS345541, an
IKK-2 inhibitor having a distinct chemical structure (IC50�300
nmol/L). BMS345541 does not compete with ATP (it binds to
homologous allosteric sites on IKK-1 and IKK-2) and presum-
ably has different off-target effects. We found TPCA-1 to be
nearly as potent an inhibitor of Jak2 in vitro (Ki�9 nmol/L) as of
IKK-2 (Ki�1.6 nmol/L), its known target, but BMS345541 was
IKK selective. Moreover, in IL-6–stimulated cells, BMS345541
reduced phosphorylation of the IKK substrate Ikba on Ser32/
Ser36 but had no detectable effect on the level of phosphory-
lated Stat3-Y705 (Fig. 7). We conclude that Jak2 is a target
of TPCA-1 (consistent with a recent kinome profile; ref. 33),
and that Boolean network inference therefore identified a
new target for the drug rather than a new protein–protein
interaction.

Discussion

Despite the relative crudeness of 2-state logical approxima-
tions of biochemical reactions, this article shows that it
is possible to use Boolean modeling in combination with
high-throughput cell-response data to automate discovery of
biochemical differences in signal transduction among tumor
and normal cell types. Applying the approach to primary
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human hepatocytes and 4 HCC cell lines revealed consistent
differences in the apparent logic and activities of growth factor
receptor and intracellular kinase cascade in response to dif-
ferent ligands. Among the inferred differences between normal
and transformed cells are several involving the strength or logic
of signaling among IR, PI3K,AKT, andNF-kB, allmolecules that
have been implicated in the development of HCC. An unex-
pected pharmacologic insight was the identification of Jak-Stat
signaling as a target for TPCA-1, an IkB kinase inhibitor
developed to treat arthritis andairway inflammation.Detecting
this polypharmacology required comparison of a computable
network model against data across a landscape of treatment
conditions, thereby allowingmultivariate effects to be linked to
specific causes. Intriguingly, TPCA-1 is significantly more
potent than other IKK inhibitors in assays for airway inflam-
mation. Both Jak2/Stat3 and IKK/NF-kB play a role in inflam-
mation (13, 14) andTPCA-1would therefore seem tobe a "dirty"
drug that is superior to a drug that binds specifically to the
nominal target (34). More generally, the approach to modeling
described in this article may constitute a general means to
study polypharmacology that is complementary tomethods for
investigating drug mechanism on the basis of transcriptional
data and protein interaction networks (35).

Our method focuses on eliminating interactions in the
PKNs that do not fit data. Because the number of potential
edges in an approximately 80-node network exceeds 1040, it is

currently impossible to conduct a comprehensive search for
new edges that improve the fit to data. However, in the current
work simple inspection sufficed to identify a potential AND-
gated edge connecting IKK!Stat3 that was absent from the
PKN. Implementing a rigorous approach to finding new edges
will require efficient means to search models locally or to
make more intelligent use of prior knowledge. Alternatively, a
variety of network–inference methods other than Boolean
logic are likely to be effective for analyzing biochemical data,
including differential equations (36–38), Bayesian networks
(39), and fuzzy logic (40). Continued development of CellNOpt
on our part, as well as the creation of alternative modeling
approaches fostered by efforts such as DREAM (41), is likely to
improve the efficiency and accuracy of network inference from
biochemical data. Moreover, improvements in affinity capture
assays, protein arrays (42), and mass spectrometry (43, 44)
should make it possible to collect much more extensive
training data than we report here.

Deep sequencing and other approaches to genome analysis
support the idea that it is networks and pathways rather than
individual genes that are the functional objects of oncogenic
mutation and selection in human cancer (45). However,
approaches for constructing large-scale protein interaction
graphs (4–6) are rarely cell-type specific, and traditional
"bottom-up" experiments that focus on cellular responses
rather than network topologies are effective at uncovering
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such differences, but they cannot easily incorporate network
information in a formal way. Comparative network inference
is needed to close the gap, but current efforts focus on gene
regulatory networks, in large part because available datasets
involve expression signatures, gene sequences, and transcrip-
tion factor binding sites (9, 46). Our results with Boolean
logic and biochemical data constitute an encouraging proof-
of-principle that the biochemistry of signaling networks,
including the states and activities of proteins important in
modern drug discovery, can be also be inferred and studied
systematically. Because the product of our analysis is a
computable model, it is amenable to continuous improvement
and extension (with new data and interactions, for example) in
much the same way as networks inferred from genome data.
In contrast, it is difficult to account for new data by using
conventional, informal descriptions.
However, comparison of contemporary approaches to

studying gene regulatory network in cancer (e.g., Carro
and colleagues; ref. 9) with our work serves to illustrate a
fundamental difference between genome-scale data and
"high throughput" biochemistry. Genomic datasets tend to
contain many data points, and identifying regulatory inter-
actions and biologically meaningful covariation is a major
challenge. In contrast, even "systematic" sets of biochemical
data are much smaller. However, biochemical data are also
preselected to contain relevant signaling information and
the primary challenge is creating a framework that is effec-
tive at modeling relatively sparse data from multiple cell
types. The rather narrow purview of biochemical models

also makes it likely that many important responses are
missed because they are not measured. The future clearly
lies in creating hybrid models that fuse biochemical data on
immediate-early signaling with data on sequence variation,
gene expression, and transcription factor binding. Such
models would provide unique insight into mechanisms of
oncogenic transformation and would have practical uses in
drug discovery and tumor classification. For example, it has
been shown that generic PINs and PKNs represent valuable
prior knowledge for tumor classification from transcrip-
tional profiles (47), and it seems likely that more accurate
tumor-specific logical models or hybrid "interactomes"
would prove even more useful in this context.
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Figure 7. Probing the
biochemistry of an inferred
IKK-Stat3 interaction. For in vivo
experiments, cells were pretreated
with 2 to 20 mmol/L TPCA-1or
BMS345541. The concentration
range of TPCA-1 was 10-fold
lower than BMS345541 to match
published IC50 values for inhibition
of Ikb phosphorylation. Cells were
pretreated with drug for 1 hour and
then stimulated with IL6; the
phosphorylation of Stat3Y705
was measured 25 minutes
thereafter. In vitro experiments
were conducted with recombinant
kinases and phosphorylation
levels measured by using a
fluorescence assay.
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