
Articles

nature methods  |  VOL.8  NO.6  |  JUNE 2011  |  487

Whereas genomic data are universally machine-readable, data 
from imaging, multiplex biochemistry, flow cytometry and 
other cell- and tissue-based assays usually reside in loosely 
organized files of poorly documented provenance. This arises 
because the relational databases used in genomic research are 
difficult to adapt to rapidly evolving experimental designs, 
data formats and analytic algorithms. Here we describe an 
adaptive approach to managing experimental data based on 
semantically typed data hypercubes (SDCubes) that combine 
hierarchical data format 5 (HDF5) and extensible markup 
language (XML) file types. We demonstrate the application of 
SDCube-based storage using ImageRail, a software package for 
high-throughput microscopy. Experimental design and its day-
to-day evolution, not rigid standards, determine how ImageRail 
data are organized in SDCubes. We applied ImageRail to collect 
and analyze drug dose-response landscapes in human cell lines 
at single-cell resolution.

It is widely accepted that biomedical data should be machine-
readable and web-accessible. Relational database management 
systems1,2 have proven highly effective with sequence data that are 
string-based, invariant in organization and interpretable without 
knowledge of the experiments, instruments or algorithms used to 
gather them. It has proven more difficult to manage data arising 
from complex biochemical measurements, imaging, flow cyto
metry and phenotypic assays of cells and tissues. The interpretation  
of these data, which are often unstructured (for example, images), 
is critically dependent on experimental context, and this context 
changes frequently. The difficulty in developing satisfactory data-
base solutions for ‘high-content’ data is widely ascribed to insuf-
ficient standardization or poor implementation3, but we believe 
the problem is more fundamental: it reflects the impossibility of 
fully specifying a priori complex experimental designs. Flexible 
and creative design is the essence of good experimental science, 
and because design determines data structure (the number of 
time points, repeats, conditions and others), structures frequently 
change (Fig. 1a). To accommodate these changes, database schema 
must be reconfigured frequently, a complex and time-consuming 
task. Thus, most experimental data reside in unlinked, loosely 
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annotated spreadsheets that are easily fragmented or lost4,5. When 
data scope and complexity demand a more capable repository, a 
new database is often created ad hoc.

As an illustrative problem in biological data management, we focus 
here on high-throughput, high-content microscopy6,7. Microscopy 
presents two distinct data management challenges. One is the sheer 
size of the data, which can exceed many terabytes per month. The 
second involves the difficulties of working with numerical data 
extracted by image analysis, which can include a large number of data 
types that have complex relationships to each other (for example,  
the boundaries and intensities of cells or compartments and com-
puted features such as nuclear translocation; Fig. 1b)8. For example, 
a typical genome-wide RNAi screen might generate ~7 × 105 images 
(~1.3 terabytes of data); analysis would increase the size only mod-
estly (by ~100 megabytes), but the number of data entries would 
increase from ~106 images to >109 features (Supplementary Fig. 1). 
Conventional spreadsheets and comma-separated value (CSV) 
files perform poorly with 109 data entities, and relational databases 
impose the organizational costs described above.

Here we propose a potential solution to the challenge of manag
ing high-dimensionality biomedical data based on the use of 
semantically typed data hypercubes (SDCubes) in which binary 
data are stored in hierarchical data format 5 (HDF5; http://www.
hdfgroup.org/HDF5/), and metadata and data ontologies are 
stored in extensible markup language (XML; http://www.w3.org/
standards/xml). We created a new open-source Java library, the 
SDCube programming library (Supplementary Software 1; 
http://www.semanticbiology.com/software/sdcube/) that can 
create SDCubes with appropriate dimensionality, encode the 
data model in a machine-readable XML ontology and reformat 
SDCubes as needed when experiments change (Fig. 2a). To illus-
trate the use of SDCubes, we created a second program, ImageRail 
(Supplementary Software 2; http://www.semanticbiology.com/
software/imagerail/), for high-content microscopy that (i) segments  
images of cells grown in 96- and 384-well plates to extract 
features such as cell shape and size, (ii) stores experimental 
metadata and results of image analysis in SDCubes, (iii) com-
putes sets of cellular features from the image (for example,  
fluorescence and localization metrics), and (iv) displays metadata, 
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images and analysis in various formats9. 
By using SDCubes, ImageRail can organ-
ize data according to the design of an 
experiment and its day-to-day evolution 
rather than an inflexible, predetermined 
schema. We used these tools to character-
ize the responses of tumor cells to thera-
peutic small molecules and show that the 
apparent half-maximal inhibitory concen-
tration (IC50) for receptor inhibitors varies with ligand dose, that 
cell-to-cell variability is maximal as ligands and drugs approach 
concentrations likely to be encountered in vivo, and that variance 
impacts the shape of dose-response curves. Our results suggest 
that monitoring variance will be broadly useful in preclinical 
pharmacology. Moreover, because flow cytometry and multiplex 
biochemistry have similar workflows to imaging4,10, ImageRail 
and the SDCube programming library are starting points for  
managing diverse experimental data.

RESULTS
Managing complex and heterogeneous data using SDCubes
HDF5 files can contain both structured and unstructured data, 
can encode data hierarchically using ‘groups’ (analogous to file 
system folders), are unlimited in size and can be opened pro-
gressively using software libraries that read and write selected 
slices of data. The latter feature is critical for files that exceed 
the size of physical memory. To date, HDF5 has been used pri-
marily in observational sciences (particularly remote Earth 
sensing) involving highly standardized data collection and 
little or no directed perturbation of the system under study. It 
has been suggested that HDF5 might be applied to biological 
imaging11, but no practical implementations exist, and HDF5 
alone appears to be insufficient to meet the challenges of bio-
logical experiments involving complex perturbations such as 
gene knockdown, drug and ligand dose response, pulse-chase 
and others. SDCubes address this challenge by encoding the 
design of perturbation-rich experiments in XML and using 
the design to create HDF5 files of appropriate dimensionality.  
A two-format solution is needed because XML is ill-suited for 
storage of large numerical datasets, and HDF5 lacks easy inte-
gration with ‘minimum information’ standards such as mini-
mum information for biological and biomedical investigations 
(MIBBI)12 and other web-based ontologies.

The HDF5 component of an SDCube is composed of basic data 
modules, each of which contains the HDF5 groups ‘data’, ‘meta’, ‘raw’ 
and ‘children’ (Fig. 2b). The data group contains measured or com-
puted data stored in N-dimensional arrays; the meta group contains 
metadata such as plate address, sample identifiers and the SDCube 
XML file; and the raw group contains original CSV, TIFF, FCS and 
other primary data as byte arrays. The children group allows creation 
of nested data modules, each containing progressively more detailed 
information (Fig. 2c). The top-level children group is special in that 
it is always organized by ‘sample’, a label identical to ‘experiment’ in 
the minimum information about a cellular assay standard12.

The XML component of SDCubes contains four types of 
information: (i) standard metadata (for example, investigator and 
research group); (ii) experimental protocol (for example, informa-
tion on cell lines and reagents, in formats conforming to MIBBI 
standards when possible); (iii) experimental design (for example, 
species and other variables in the protocol, such as time or pertur-
bation, that are applicable to each sample); and (iv) the identities of 
algorithms and free parameters used during conversion of raw data 
into useful experimental measurements (Online Methods). Using 
methods in the SDCube programming library (Supplementary 
Note 1), new samples, dimensions or assays can be appended to or 
inserted into an existing SDCube simply by modifying the XML 
file and adding to the children group at the top level of the HDF5 
hierarchy (Fig. 2d). SDCubes are adaptable to a variety of biological 
assays (Supplementary Fig. 2) and can be combined to aggregate 
data from other SDCubes or divided up to create data subsets.

Implementing the HDF5-XML SDCube standard in ImageRail
ImageRail is a standalone program for high-throughput image 
analysis that creates and manipulates SDCubes and serves as a 
test of the concepts outlined above. ImageRail has four software 
components. First, formatting tools create and modify SDCubes 
so that the children group is formatted to create a five-level 
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Figure 1 | Challenges in management of 
multidimensional data. (a) Schematic 
representation of various experimental protocols 
to illustrate that experimental design is the key 
determinant of data dimensionality (numbers and 
types of dimensions, which are represented by 
axes whose length represents magnitude). In the 
case of single-cell pharmacology, this includes 
the selection of drug, dose, time and type of 
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of high-throughput immunofluorescence 
experiments managed by ImageRail, which have 
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model. The graph shows the amount of data 
in terabytes during the illustrated steps in the 
image processing workflow and the number of 
individual data entries.
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data hierarchy comprising project, plate, 
well, (image) field, cell and (cellular)  
compartment (conforming to the entity-
relationship model in Figs. 1b and 2e). 
Dropdown lists and a graphical user 
interface for highlighting wells make it 
possible to specify which experimental 
conditions map to which wells, thereby 
specifying the experimental design and 
SDCube dimensionality, and creating 
XML annotation (Fig. 3a). Second, image 
analysis tools create and store segmentation masks based on 
standard algorithms for cell monolayers, which can be extended 
using existing software such as ImageJ13 (Fig. 3b). Third, data 
viewers display raw data and computed features as images, line 
plots, histograms, scatter plots and multiwell plate views. Scatter 
plotting includes multidimensional gating similar to that used 
for analysis of flow cytometry data (Fig. 3c). Finally, embedded 
routines enable dynamic linking of data points to specific image 
features. Dynamic linking allows users to highlight cells in an 
image that correspond to selected data points in a scatter plot 
(Fig. 3b,c), facilitating the identification of outliers and experi-
mental artifacts such as bubbles, tissue-culture debris or edge 
effects (Supplementary Fig. 3). Users choose the level of detail 
at which to store the link between segmentation and data; at one 
extreme, pixel-by-pixel information can be stored, but we gener-
ally find it more useful to store either the centroid of each cell 
or a bounding box (Fig. 3d). Although the SDCube data group 
‘raw’ can store image data, we are in the process of integrating 
ImageRail with the open microscopy environment remote objects 
(OMERO) image server14. Thus, ImageRail currently stores TIFF 
files alongside SDCubes and not within them. OMERO provides 
powerful tools for processing and organizing images, is used 
widely in open-source and commercial image management 
applications14 and OME-TIFF has found wide acceptance as a 
file standard for biological microscopy15.

Monitoring cell-to-cell variability in drug responses
It is widely hypothesized that variability in cellular responses to 
drugs and the presence of drug-resistant cell subpopulations can 
impact cancer therapy16. One application of ImageRail is to system-
atize single-cell drug-response studies and uncover the origins and 
importance of variability. Our proof-of-principle studies focused 
on the effect of changes in the concentration of epidermal growth 
factor (EGF) on the IC50 of the ATP-competitive EGF receptor 
(EGFR)  inhibitor gefitinib17. We assayed inhibition by immunoflu-
orescence microscopy, using antibodies to the downstream kinase 
ERK1/2 phosphorylated at Thr202 and Tyr204 (henceforth called 
ppERK). EGFR mutation and overexpression are implicated in a 
wide range of tumors18 and gefitinib is used clinically to treat lung, 
colorectal and other cancers19,20.

Here we exposed cells to EGF at ten doses over a 104 con-
centration range in combination with gefitinib at eight doses 
over a 103 range using a simple adaptive design in which each 
96-well plate was subjected to a different and changeable set 
of treatments and measurements. To enable image segmenta-
tion with a standard watershed algorithm, we treated cells with 
nuclear and cytoplasmic stains (Supplementary Fig. 4). The 
dataset comprised 160 conditions, 1.4 × 106 individual cells and 
an SDCube with 2.8 × 106 entries (a tenfold larger dataset is 
shown in Supplementary Fig. 5). By accessing different slices 
of the cube, we can view data as IC50 curves at various EGF 
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concentrations or as EGF dose-response 
curves at various drug concentrations; 
cell-to-cell variability can also be visual-
ized at any point (Fig. 4a). We observed 
that average amounts of ppERK increased with increasing [EGF] 
and decreased with increasing [gefitinib], and that the apparent 
IC50 was sensitive to EGF concentration, varying ~20-fold as 
exogenous EGF varied from 0 ng ml−1 to 100 ng ml−1 (Fig. 4b). 
Well-average data computed from images closely matched dose-
response data obtained using conventional biochemical assays 
(Supplementary Fig. 6). The relationship between IC50 and 

[EGF] varied substantially with cell type (Fig. 4c): whereas IC50 
was strongly sensitive to [EGF] in SKBR3 and T47D cells, it was 
less so in MCF7 cells (Supplementary Fig. 7). Data exploration 
of this type is intuitively simple but involves the manipulation of 
many data entries; because HDF5 successively loads data, there 
is no limit a priori to the number of entries, and we validated 
ImageRail with ~108–109 data points.

Figure 3 | Annotated and simplified screen 
shots from ImageRail software. (a) Screenshot 
showing general experiment metadata (i) and 
computable information derived from image 
analysis across perturbations and measurements (ii)  
associated with selected wells of a microtiter 
plate (iii). White document icons represent 
the number of image fields that have single-
cell data stored in the HDF5 file available for 
analysis (iv), and numbers represent imaged 
fields and wavelengths (v). (b) Screenshot 
illustrating dynamic linking of extracted data to 
the source images that shows which cells gave 
rise to which measurements and is implemented 
using an image viewer and scatter plot (red 
box in c). (c) Screenshot illustrating data 
visualization, which includes single-cell scatter 
plots with flow cytometry–style gating (left) 
and plate heatmaps of population averages 
along with a representation of the underlying 
single-cell distributions (right). (d) Results of 
image segmentation can be stored in different 
ways, including centroid, outline and bounding 
box. Scale bar, 100 µm.

Figure 4 | Exploring different dimensions of a multivariate drug and ligand dose-response series using SDCubes. (a) Well-mean values are computed from single-
cell data recorded from cultured SKBR3 cells exposed to exogenous EGF for 10 min over a range of concentrations and then stained with antibodies to ppERK. 
Error bars, s.e.m. of biological triplicates. Plotted data show conventional drug dose-response relationships at different ligand concentrations (top). Inverting 
the axes allows the same data to be plotted as a ligand dose-response curve at different drug doses (middle). For each mean value in either plot, the underlying 
single-cell distribution can be visualized as scatter-plots (bottom; gefitinib dose-response at 1 ng ml−1 EGF). (b) ppERK signal in SKBR3 cells treated as in a and 
colored according to the degree of cell-to-cell variation, with 1 being a high coefficient of variation. (c) Whisker plots of gefitinib IC10, IC50 and IC90 values for 
the inhibition of ERK phosphorylation by gefitinib in SKBR3, T47D and MCF7 cells treated for 10 min with a range of EGF concentrations.
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On comparing mean ppERK levels with cell-to-cell variance 
using plate maps (Fig. 5a), we observed maximum variability at 
physiologically relevant doses of drug and ligand (estimated to be 
0.1–1.5 ng ml−1 for EGF and 0.4–50 µM for gefitinib21,22). Mean 
value and variance in response changed over time, such that 20 h  
after EGF and gefitinib treatment, IC50 was less dependent on 
[EGF] but the variance increased. By linking back to the underlying 
images, we observed that even in cells exposed to saturating doses 
of gefitinib (10 µM) for 20 h, a subpopulation of cells (~1%) had 
elevated ppERK levels. This implies not only that these cells were 
drug-resistant but also that ERK signaling could be sustained in 
the absence of exogenous ligand (a behavior different from that of 
cells that are simply gefitinib-insensitive; Fig. 5a,b). Thus, single-
cell data revealed three interesting features of cellular responses to 
gefitinib and EGF. First, IC50 varied with the concentration of extra
cellular ligand, particularly at early time points. Second, the extent 
of cell-to-cell variability was maximal near intermediate, physio
logically relevant concentrations; conversely, it was masked when 
drug or ligand were added at high levels. Third, cell-to-cell hetero-
geneity changed over time, being dominated initially by broad dis-
tributions and subsequently by rare cells with sustained signaling. 
Whether the differences we observed are genetic23, epigenetic24 or 
stochastic25 in origin is not yet clear, but reversibility implies that 
some are indeed stochastic, as we have previously demonstrated for 
TNF-responsive apoptosis-inducing ligand (TRAIL)25.

The shape of dose-response curves for drugs and ligands often 
depends on the agent and cell type (Fig. 4c and Supplementary 
Fig. 7). Gefitinib dose response of cells exposed to EGF con-
formed to a sigmoidal shape as expected for simple ligand-
receptor binding, but the dose-response for an inhibitor of MEK 
kinase (PD0325901)26, an enzyme acting immediately upstream 
of ERK1/2 kinases in EGFR signaling, was nearly linear over a 
103 [EGF] range (Fig. 5c). At the single-cell level, responses to 
gefitinib were bimodal, with low ppERK levels in some cells and 
100-fold higher levels in other cells, but responses to PD0325901 
were continuous, with cells exhibiting a wide range of activities 
(Fig. 5d). We conclude that the mean-value dose-response curves 

for PD0325901 and gefitinib differed because of variability at the 
single-cell level and speculate that this might be a general explana-
tion for nonsigmoidal dose-response relationships.

DISCUSSION
By creating a lightweight data repository customized to the design 
of a specific experiment and then storing the design in a machine-
readable XML format, the SDCube programming library places 
experimental design foremost in organizing data for storage. The 
use of XML to encode ontologies simplifies harmonization with 
existing web-based standards12, and the use of HDF5 allows pro-
gressive access to even very large files. As the design changes 
or expands, the dimensionality of SDCubes changes as do the 
metadata tags that point to specific data elements. The result is 
an approach to data and metadata storage that aims to address the 
competing demands of data integrity and flexibility. Little atten-
tion has been paid to computer-readable experimental designs, 
and only one public specification exists (minimum information 
for data analysis in systems biology; MIDAS)27. It is possible, 
however, to document the format of any hypothesis-driven or 
systematic experiment in XML, making it straightforward to use 
resource description framework (RDF) and web ontology lan-
guage (OWL) to share and analyze experimental designs, a critical 
step in making the results from complex experiments machine-
interpretable in light of their purpose and context.

Although we applied SDCubes to microscopy data using ImageRail, 
the SDCube format is in principle adaptable to any type of high-
dimensional data, and we created preliminary schemata for multi-
color flow cytometry10 and multiplex or array-based biochemical 
assays28 (Supplementary Fig. 2). Matlab users will recognize that 
some SDCube functionality is already present in Matlab, which 
makes extensive internal use of multidimensional data arrays (indeed, 
Matlab can read HDF5 files). However, Matlab files cannot duplicate 
key features of SDCubes: they cannot be read incrementally, their 
data models cannot be referenced to external ontologies or parsed 
using web-based tools, and Matlab is not open-source software, an 
important consideration for an open data standard.
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Figure 5 | Single-cell analysis of drug-ligand dose responses uncovers cell-to-cell heterogeneity. (a) ppERK signal was measured at 10 min and 20 h  
in SKBR3 cells treated with indicated doses of EGF and gefitinib. Heat maps of the mean values and coefficients of variation of the underlying cell 
population histograms are overlaid on a representation of a standard 96-well microtiter plate. (b) Selected immunofluorescence images of ppERK staining 
(red) and Hoechst staining (blue) of cells 20 h after exposure first to 10 µM gefitinib and then to 100 ng ml−1 EGF. Scale bars, 100 µm. (c) EGF-induced 
ppERK dose-response curves in SKBR3 cells pretreated with subsaturating doses of gefitinib or the MEK inhibitor PD0325901. Error bars represent the 
s.e.m. of biological triplicates. (d) Single-cell distributions for the population mean data shown in c.

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



492  |  VOL.8  NO.6  |  JUNE 2011  |  nature methods

Articles

We designed ImageRail to be interoperable with existing open-
source image analysis software, including ImageJ, CellProfiler 
and OME13–15,29. Interoperability is important to avoid duplica-
tion of effort, but ImageRail also needs to function as a stand-
alone application; hence we included common segmentation and  
visualization routines.

The ability of SDCubes and ImageRail to systematize data 
from complex dose-response experiments has made it possible 
to implement an efficient scheme for single-cell pharmacology. 
Exposing tumor cells to growth factors and kinase inhibitors 
in combination reveals many examples of cell-to-cell vari-
ability; some of these are likely to have nongenetic origins, by 
direct analogy to the variability observed in cellular responses 
to TRAIL25, T-cell receptor agonists30 and other ligands31. 
Variability is maximal at doses close to the IC50 of gefitinib or 
the half-maximal activation (EC50) by EGF, precisely the doses 
likely to prevail in humans. It therefore seems reasonable that 
application of single-cell pharmacology will help to uncover the 
basis of fractional killing by anticancer drugs and assist in dis-
secting the origins of intrinsic and acquired drug resistance32.

In many exploratory biological experiments, data collection and 
analysis are iterative processes undertaken by a limited number of 
people. In this environment, the high-integrity, multiuser, read-
write operations enabled by conventional databases are unneces-
sary overhead, and SDCubes offer an effective alternative. But as 
data become more mature or an experiment nears completion, 
it will often be advantageous to move key results to a relational 
database. One way to accomplish this is to create a specialized sum-
mary view of an SDCube and then import the summary data into a 
database. Only data conforming to a pre-existing standard would 
be accessible in the database, but an SDCube containing all primary 
data could easily be called using a uniform resource identifier (URI, 
akin to a web URL). It is possible that new types of databases will be 
developed with science in mind (for example, SciDB), but we pre-
dict that lightweight, adaptable, file-based data storage will always 
coexist with server-based data management and that sophisticated 
file formats such as SDCubes will provide a missing link between 
creative experimentation and machine-interpretable data.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.
Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Software availability. Software, user manuals and periodic updates 
are available at http://www.semanticbiology.com/software/. 
Software is also available as Supplementary Software 1 and 2.

Details of SDCubes. SDCubes store experimental data from vari-
ous bioassays in HDF5 file format with an XML file describing how 
each sample was treated experimentally. Four types of information 
are recorded in the XML component of an SDCube, conforming to 
an XML schema specification. The first consists of standard infor-
mation such as date, experimenter, research group and others. The 
second describes the experimental protocol, including information 
on cell lines, reagents, drugs and environmental factors. Existing 
minimum information standards such as minimum information 
about a microarray experiment and minimum information about 
a cellular assay (components of MIBBI) are used where possible12, 
and integration of other relevant XML formats such as CML (chem-
ical markup language)33 will be straightforward. The third type of 
information relates to experimental design, that is, how variables 
in the protocol such as time, perturbation or assay are applied to 
each sample in the experiment. Design is the primary determi-
nant of data cube dimensionality, but relatively little effort has 
been devoted thus far to making experimental design computer-
readable. All SDCubes currently conform to our MIDAS standard 
for experimental design27, but we anticipate development of other 
machine-readable experimental designs in the future. The fourth 
block of XML-encoded metadata specifies the identities of all algo-
rithms and free parameters used during conversion of raw data into 
useful experimental measurements; these include algorithms for 
cell tracking, background subtraction, intensity normalization and 
descriptor calculation. Given the potential complexity and hetero-
geneity of such algorithms, we intend to index them in XML using 
URIs or persistent unique digital identifiers (for example, Digital 
Object Identifiers as applied to journal articles), but it is also pos-
sible simply to embed equations or software code in HDF5 files.

ImageRail software. Many image analysis software packages are 
already available in both the commercial and academic domains, 
and we designed ImageRail to be interoperable with key open-
source applications (Supplementary Table 1). ImageRail follows 
an ‘overlapping modular design’ to create an application with new 
capabilities but sufficient functionality in common tasks, such as 
metadata entry, image segmentation, feature extraction and image 
and data visualization, to function as a stand-alone application. 
Additional functionality is acquired through the use of existing 
software (Supplementary Fig. 8). For example, ImageRail imports 
standard TIFF images from microscope-control software, uses Java-
encoded analysis algorithms and exports slices of HDF5-XML data 
as CSV files for analysis by software such as Excel (Microsoft) or 
Spotfire (TIBCO). We also expect to build a link to CellProfiler29 
to enable use of its image-processing engine and storage of the 
resulting data in SDCubes. ImageRail can also export data slices 
in CSV-MIDAS format to be interoperable with DataRail27, a soft-
ware package we had developed previously to manipulate multi-
dimensional biochemical data and construct regression models. 
DataRail currently does not use SDCubes, but we are writing a 
new version that will. Integration of ImageRail with other soft-
ware packages requires Java programming through the use of the 
provided application programming interface. The overall goal of 

the integration effort is to leverage a rich set of existing software and 
to allow ImageRail to fit into existing data workflows. Conversely, 
interested developers can use the provided SDCube program-
ming library to create new software for flow cytometry34, protein 
arrays35,36 and multiplex immunoassays37 or even for nonbiological 
data. Refer to the ImageRail user manual (Supplementary Note 2) 
for specific software instructions.

Cell treatment and immunofluorescence staining. Cells 
were plated at 7,500 cells per well in 96-well microscopy plates 
(Corning) in recommended medium for 24 h and then starved in 
medium lacking serum for 16 h. Cells were pretreated for 10 min 
with tenfold stock solutions of gefitinib (LC Laboratories) or MEK 
inhibitor PD0325901 (Selleck Chemicals) and treated with tenfold 
stock solutions of EGF (PeproTech) for the indicated amounts of 
time. Cells were fixed in 2% paraformaldehyde for 10 min at room 
temperature (20–25 °C) and washed in PBS with 0.1% Tween 20 
(Sigma-Aldrich) (PBS-T). Cells were permeabilized in methanol 
for 10 min at room temperature, washed with PBS-T and blocked 
in Odyssey Blocking Buffer (LI-COR Biosciences) for 1 h at room 
temperature. Cells were incubated overnight at 4 °C with anti-
bodies to ppERK, Akt phosphorylated on Ser 473 (pSer473Akt) 
or cJUN phosphorylated on Ser 73 (pS73cJUN) (Cell Signaling 
Technology) diluted 1:400 in Odyssey Blocking Buffer. Cells were 
washed three times in PBS-T and incubated with rabbit-specific 
secondary antibody labeled with Alexa Fluor 647 (Invitrogen) 
diluted 1:2,000 in Odyssey Blocking Buffer. Cells were washed 
once in PBS-T, once in PBS and incubated in 250 ng ml−1 Hoechst 
33342 (Invitrogen) and 1:1,000 Whole Cell Stain (blue; Thermo 
Scientific) solution. Cells were washed two times with PBS and 
imaged in an imageWoRx high-throughput microscope (Applied 
Precision). The microscope had a 10× objective and 12-bit camera 
sensor under 2 × 2 binning giving 1,024 × 1,024 pixels per image 
with final spatial resolution of 1.48 µm per pixel. Microscopy 
exposure times were 1 s for the 647 nm fluorophore (far-red) and 
0.012 s for the Hoechst (blue) channel. ImageJ software was used 
to compute the linear color scaling of  [10, 100] pixel intensity 
units in the red channel and [10, 1,500] pixel intensity units in 
the blue channel, and enable creation of the multichannel pseudo-
colored images shown Figure 5b. Bioplex assays were performed 
as previously described38. Data for Supplementary Figure 5 was 
plotted using DataPflex39.
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