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Cell death plays an essential role in the development of tissues and organisms, the etiology of
disease, and the responses of cells to therapeutic drugs. Here we review progress made over
the last decade in using mathematical models and quantitative, often single-cell, data to study
apoptosis. We discuss the delay that follows exposure of cells to prodeath stimuli, control of
mitochondrial outer membrane permeabilization, switch-like activation of effector caspases, and
variability in the timing and probability of death from one cell to the next. Finally, we discuss
challenges facing the fields of biochemical modeling and systems pharmacology.
Introduction
Apoptosis is a form of programmed cell death involving

caspases, specialized cysteine proteases found in animal cells

as inactive proenzymes (Fuentes-Prior and Salvesen, 2004).

Dramatic progress has been made in recent years in identifying

and determining the biochemical activities and cellular functions

of biomolecules that regulate apoptosis and carry out its proteo-

lytic program. However, current knowledge is largely qualitative

and descriptive, and the complex circuits that integrate prosur-

vival and prodeath signals to control the fates of normal and

diseased cells remain poorly understood. Successful creation

of quantitative and predictive computational models of

apoptosis would be significant from both basic research and

clinical perspectives. From the standpoint of basic research,

apoptosis is a stereotypical systems-level problem in which

complex circuits involving graded and competing molecular

signals determine binary life-death decisions at a single-cell

level. Progress in modeling such decisions has had a significant

impact on the small but growing field of mammalian systems

biology. From a clinical perspective, diseases such as cancer

involve disruption of the normal balance between cell prolifera-

tion and cell death, and anticancer drugs are thought to achieve

their therapeutic effects by inducing apoptosis in cancer cells

(Fadeel et al., 1999). However, it is difficult to anticipate whether

a tumor cell will or will not be sensitive to a proapoptotic stimulus

or drug based on general knowledge of apoptosis biochemistry

because the importance of specific processes varies dramati-

cally from one cell type to the next. Predictive, multifactorial,

and context-sensitive computational models relevant to disease

states will impact drug discovery and clinical care.

Apoptosis can be triggered by intrinsic and extrinsic stimuli. In

intrinsic apoptosis, the death-inducing stimulus involves cellular

damage or malfunction brought about by stress, ultraviolet (UV)

or ionizing radiation, oncogene activation, toxin exposure, etc.

(Kaufmann and Earnshaw, 2000). Extrinsic apoptosis is triggered

by binding of extracellular ligands to specific transmembrane
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receptors, primarily members of the tumor necrosis factor

receptor (TNFR) family (Kaufmann and Earnshaw, 2000).

Receptor binding by TNF family ligands activates caspase-

dependent pathways that are quite well understood in molecular

terms. In general, extrinsic apoptosis has received more atten-

tion than intrinsic apoptosis from investigators seeking to

develop mathematical models, but extrinsic and intrinsic

apoptosis share many components and regulatory mechanisms.

The best studied inducers of extrinsic apoptosis are TNF-a,

Fas ligand (FasL, also known as Apo-1/CD95 ligand), and TRAIL

(TNF-related apoptosis-inducing ligand, also known as Apo2L;

Figure 1A). Binding of these ligands to trimers of cognate recep-

tors causes a conformational change that promotes assembly of

death-inducing signaling complexes (DISCs) on receptor cyto-

plasmic tails (Gonzalvez and Ashkenazi, 2010). DISCs contain

multiple adaptor proteins, such as TRADD and FADD, which

recruit and promote the activation of initiator procaspases. The

composition of the DISC differs from one type of death receptor

to the next and also changes upon receptor internalization

(Schutze et al., 2008). A remarkable feature of TNF-family recep-

tors is that they activate both proapoptotic and prosurvival

signaling cascades and the extent of cell death is determined

in part by the balance between these competing signals. Pro-

death processes are triggered by activation of initiator procas-

pases-8 and -10 at the DISC, a process that can be modulated

by the catalytically inactive procaspase-8 homolog FLIP

(Fuentes-Prior and Salvesen, 2004). Prosurvival processes are

generally ascribed to activation of the NF-kB transcription factor,

but other lesswell-understood processes are also involved, such

as induction of themitogen-activated protein kinase (MAPK) and

Akt (protein kinase B) cascades (Falschlehner et al., 2007).

Initiator caspases recruited to the DISC directly cleave effector

procaspases-3 and -7 generating active proteases (Fuentes-

Prior and Salvesen, 2004). Effector caspases cleave essential

structural proteins such as cytokeratins and nuclear lamins

and also inhibitor of caspase-activated DNase (iCAD), which
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Figure 1. Modeling Receptor-Mediated Apoptosis
(A) Simplified schematic of receptor-mediated apoptosis signaling, with
fluorescent reporters for initiator caspases (IC FRET) and effector caspases
(EC FRET) indicated. The MOMP reporter measures mitochondrial outer
membrane permeablization.
(B) Steps involved in converting a biochemical cartoon into a reaction diagram
and ordinary differential equations. C8* indicates active caspase-8.
Lower panels show a model-based 12 hr simulation of the increase in tBid
relative to the time of MOMP and analysis of the sensitivity of MOMP time to
Bid levels. The simulation in (B) was adapted from Albeck et al. (2008b).
liberates the DNase (CAD) to digest chromosomal DNA and

cause cell death. So-called ‘‘type I’’ apoptosis, which comprises

a direct pathway of receptor/initiator caspases/effector cas-

pases/death, is thought to be sufficient for death in certain cell

types, but in most cell types apoptosis occurs by a ‘‘type II’’

pathway in which mitochondrial outer membrane permeabiliza-

tion (MOMP) is a necessary precursor to effector caspase activa-

tion (Scaffidi et al., 1998). MOMP is triggered by the formation of

pores in the mitochondrial membrane. Pore formation is

controlled by the�20members of the Bcl-2 protein family, which

can be roughly divided into four types: the ‘‘effectors’’ Bax and

Bak whose oligomerization creates pores; ‘‘inhibitors’’ of Bax

and Bak association such as Bcl-2, Mcl1, and BclxL; ‘‘activa-

tors’’ of Bax and Bak such as Bid and Bim; and ‘‘sensitizers’’

such as Bad, Bik, and Noxa that antagonize antiapoptotic Bcl-

2-like proteins (Letai, 2008). In extrinsic apoptosis, initiator cas-

pases that have been activated at the DISC cleave Bid into tBid,

which in turn promotes a conformational change in Bax and Bak

leading to oligomerization. Bax or Bak oligomers create pores in

the mitochondrial outer membrane and promote cytoplasmic

translocation of critical apoptosis regulators such as cytochrome

c and Smac/Diablo, which normally reside in the space between

the outer and inner mitochondrial membranes. MOMP does not

occur until proapoptotic pore-forming proteins overwhelm antia-

poptotic Bcl-2-like proteins (the so-called rheostat model) (Kors-

meyer et al., 1993). Under most circumstances, MOMP is

a sudden process that lasts a few minutes and marks the point

of no return in the commitment to cell death (Chipuk et al.,

2006; Tait et al., 2010). Once translocated to the cytosol, cyto-

chrome c combines with Apaf-1 and caspase-9 to form the

apoptosome, which cleaves and activates effector procaspases

(Fuentes-Prior and Salvesen, 2004). XIAP associates with the

catalytic pocket of active effector caspases-3 and -7 blocking

protease activity and promoting their ubiquitin-dependent

degradation. Binding of Smac to XIAP relieves this inhibition, al-

lowing effector caspases to cleave their substrates and cause

cell death (Fuentes-Prior and Salvesen, 2004).

In this Review, we describe how combining theoretical and

computational approaches with live-cell imaging and quantita-

tive biochemical analysis has provided new insight into mecha-

nisms controlling the dynamics of extrinsic apoptosis. We start

with a brief description of modeling concepts and methods rele-

vant to apoptosis research. Next, we survey the recent literature.

Modeling apoptosis, like quantitative analysis of mammalian

signal transduction in general, is a field in its infancy fraught

with many technical and conceptual challenges. Thus, only

a subset of the known biochemistry of extrinsic apoptosis has

been subjected to computational analysis, and this analysis

has been performed only in a few cell lines. Key questions,

such as differences between normal and transformed cells,

have not yet been addressed in terms amenable to modeling.

This Review, therefore, focuses on the subset of questions for

which modeling has provided new insight (Figure 2). These

include: (1) How is all-or-none control over effector caspase

activity achieved? (2) How are activated effector caspases in-

hibited during the pre-MOMP delay while initiator caspase

activity rises? (3) How do prosurvival and prodeath signals

interact to determine if and when MOMP occurs? (4) What
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causes cell-to-cell variation in the timing and probability of

apoptosis? We close this Review with an evaluation of current

and emerging methods and future prospects. Readers inter-

ested in a more thorough description of the biology of extrinsic

apoptosis are referred to several excellent reviews (Fuentes-

Prior and Salvesen, 2004; Gonzalvez and Ashkenazi, 2010;

Hengartner, 2000) and to Douglas Green’s new book Means to

an End: Apoptosis and Other Cell Death Mechanisms (Green,

2011).

Modeling Concepts Relevant for Apoptosis
The term ‘‘model’’ is used in a variety of fields in the natural and

applied sciences to describe a mathematical or computational

representation of a physical system. In molecular biology, the

term usually refers to a ‘‘word model’’ or narrative description

accompanied by a diagram, although it can also refer to a cell

line or genetically engineered mouse that recapitulates aspects

of a human disease. In this Review, we restrict use of the term

‘‘model’’ to describe an executable set of rules or equations in

mathematical form. We are primarily interested in models that

are built and tested using detailed cellular or biochemical exper-

iments. Models of cellular biochemistry can be based on

different mathematical formalisms, from Boolean logic to differ-

ential equations, depending on the degree of detail and the

scope of the modeling effort. Most models of apoptosis have

been encoded using ordinary differential equations (ODEs),

which describe the evolution of a system in continuous time.

ODEs are the mathematical representation of mass action

kinetics, the familiar biochemical approximation in which rates

of reaction are proportional to the concentrations of reactants

(Figure 1B) (Chen et al., 2010). Diffusion, spatial gradients, or

transport can be modeled explicitly using partial differential

equations (PDEs), which represent biochemical systems in

continuous time and space. For example, Rehm et al. (2009)

used PDEs to model the spread of mitochondrial permeabiliza-

tion through a cell following an initial, localized MOMP event.

Using sets of differential equations it is possible to encode

a complex network of interacting biochemical reactions and

then study network dynamics under the assumption that protein

concentrations and reaction rates can be estimated from exper-

imental data. Differential equation models often increase rapidly

in complexity as species are added, as each new protein can

give rise to a large number of model species differing in location,

binding state, and degree of posttranslational modification. This

problem has effectively limited data-dependent ODE/PDE

models to fewer than �20 gene products (and on the order of

50–100 model species), although efforts are underway to

increase this limit.

In addition to differential equations, several other formalisms

have been used to model apoptosis. Stochastic models make

it possible to represent reactions as processes that are discrete

and random, rather than continuous and deterministic.

Stochastic models are advantageous when the number of indi-

vidual reactants of any species is small (typically fewer than

�100) or reaction rates very slow (Zheng and Ross, 1991). In

these cases, a Monte Carlo procedure is used to represent the

probabilistic nature of collisions and reactions among individual

molecules (Gillespie, 1977). For example, stochastic cellular au-
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tomata have been used to model the movement of molecules on

the mitochondrial outer membrane (Chen et al., 2007). When

sufficient time-resolved quantitative data are lacking, a less

precise modeling framework is usually advantageous, and

logic-based models have proven particularly popular. Boolean

models, for example, are discrete two-state logical models in

which each node in a network is represented as a simple on/

off switch. Boolean models have been used to represent the

interplay among survival, necrosis, and apoptosis pathways

and to predict the likelihood that each phenotype would result

following changes in the levels of regulatory proteins (Calzone

et al., 2010). However, the more qualitative and phenomenolog-

ical the modeling framework, the less mechanistic the insight.

Regardless of modeling framework, a trade-off exists between

model tractability and model detail or scope. The inclusion of

morespeciesmakes it possible toanalyzebiochemicalprocesses

in greater detail or to represent the operation of large networks

involvingmanygeneproducts, but largermodelsaremoredifficult

to constrain with experimental data, and excess detail can mask

underlying regulatory mechanisms. A Jorge Luis Borges story

comes to mind in which the art of cartography achieved such

aperfection of detail that cartographersbuilt amapof their empire

with 1:1 correspondence to the empire itself, rendering the map

useless (Borges and Hurley, 1999). On the other hand, although

small models have the advantage of relative simplicity and even

analytical tractability (i.e., capable of being solved exactlywithout

simulation), they run the risk of grossly simplifying the underlying

biochemistry and of including an insufficient number of regulatory

processes. As yet, no clear principles exist to guide decisions

about model scope and complexity, and most studies remain

constrained by the relative immaturity of modeling software and

a paucity of experimental data.

Estimating values for rate constants and initial protein concen-

trations (the parameters in differential equation models) remains

extremely challenging both computationally and experimentally.

Each reaction in an ODE model is associated with one or more

‘‘initial conditions’’ (the concentrations of reactants at time

zero) and rate constants, usually a forward and reverse rate

constant. Some of these parameters are available in the litera-

ture, typically from in vitro biochemical experiments, and these

valuesmay hold true in the context of a cell. In many other cases,

however, no estimates of rate constants are available and

parameters must be estimated directly from experiments

(Chen et al., 2010). In addition, protein concentrations vary

from cell type to cell type and should be measured directly in

the cell type under investigation, although this is often not

done because it is time consuming. The estimation of unknown

parameter values based on data (typically, time-dependent

changes in the abundance or localization of proteins in the

model) is called model calibration, model training, or model

fitting. Almost all realistic models of biological systems are too

large for all parameters to be fully constrained by experimental

data, and the models are therefore ‘‘nonidentifiable.’’ Thus far,

the process of model calibration has been approached rather

informally, but more rigorous approaches are in development

(e.g., Kim et al., 2010). Careful analysis is expected to confirm

the common-sense view that solid conclusions can be reached

even in the case of partial knowledge.



Figure 2. Questions Addressed in This

Review
(A and B) Composite plot of effector caspase
substrate cleavage measured using a CFP-
DEVDR-YFP reporter (A) or initiator caspase
substrate cleavage measured using CFP-IETDG-
GIETD-YFP (B) for >50 HeLa cells treated with
50 ng/ml TRAIL in the presence of cycloheximide
and aligned by the average time of MOMP (red
line).
(C) Fitted trajectories for initiator caspase
substrate cleavage (assayed using CFP-IETDG-
GIETD-YFP) in single HeLa cells treated with
10 ng/ml TRAIL in the presence of cycloheximide
(fits are based on sampling at 3 min intervals).
Concomitant expression of a reporter for MOMP
permits a determination of the time at which
mitochondria permeabilize and thus an estimation
of the height of the MOMP threshold (yellow
circles) and the rate of approach to the threshold
(the ‘‘slope’’ of the green lines).
(D) Histograms of time of death in HeLa cells
treated with various death ligands in the presence
of cycloheximide, as determined by live-cell
microscopy.
(A), (B), and (D) were adapted from Albeck et al.
(2008b); (C) was adapted from Spencer et al.
(2009).
Modeling biological processes requires the collection and

analysis of quantitative experimental data. An ODEmodel, which

assumes that each compartment is well mixed, necessarily

represents a single cell, and calibrating and testing ODE models

therefore require collecting data on single cells over time.

However, live-cell imaging experiments usually rely on geneti-

cally modified cell lines carrying fluorescent reporters. Creating

these lines is relatively time-consuming, and the extent of multi-

plexing is limited by phototoxicity and the availability of noninter-

fering fluorophores. It is not always clear that an engineered

reporter correctly represents the activity or state of modification

of endogenous proteins (see, for example, discrepancies

regarding initiator caspase activity reporters, discussed below;

Albeck et al., 2008a; Hellwig et al., 2008; Hellwig et al., 2010).

Flow cytometry, immunofluorescence, and single-cell PCR are

also effective means to assay single cells, and biochemical

experiments (immunoblotting or ELISAs for example) performed

on populations of cells remain essential for quantitative biology.

Although rarely addressed, effective integration of data arising

frommultiple measurement methods is an area in which compu-

tational models are likely to play a key role (Albeck et al., 2006).

The construction and parameterization of even a well

designed model do not lead directly to a better understanding

of the system—model analysis is required. The dependence of

the system on parameter values is of particular interest and

can be approached using sensitivity analysis. Sensitivity analysis

involves systematically varying parameters (initial conditions or

rate constants) while monitoring the consequences for model

output (the time at which a cell undergoes apoptosis, for

example). Sensitivity analysis reveals which outputs are sensitive

to variation in which parameters and can be viewed as the
computational equivalent of experiments that knock down or

overexpress proteins while monitoring phenotype. For example,

Hua et al. (2005) created an ODEmodel of Fas signaling and per-

formed sensitivity analysis by varying the initial concentration of

each protein species 10- or 100-fold above or below a baseline

value. Using the half-time of caspase-3 activation as an output,

they predicted (and confirmed experimentally) that increases

but not decreases in Bcl-2 levels would alter sensitivity to

FasL. From a practical perspective, sensitive parameters must

be estimated with particular care if a model is to be reliable,

but from a biological perspective, they represent possible means

of regulation. Points in a network that exhibit extreme sensitivity

to small perturbations are often referred to as ‘‘fragile’’ (the

converse of ‘‘robust’’), and considerable interest exists in the

idea that fragility analysis, a concept borrowed from control

theory, might be applied to biological pathways. In this view,

fragile points might identify processes frequently mutated in

disease or potentially modifiable using therapeutic drugs (Luan

et al., 2007).

Stability analysis is another commonly used method of model

analysis. Some models of biochemical networks have the inter-

esting property of converging at equilibrium to a small set of

stable states known as fixed points, where the rate of change

in the concentrations of all model species is zero. Identification

and characterization of fixed points can provide valuable insight

into the dynamics of a system, its responses to perturbation, and

the nature of regulatory mechanisms. Of particular interest in

biology is bistability, a property in which a system of equations

has two stable fixed points separated by an unstable fixed point.

Bistability has obvious appeal in the case of apoptosis, in which

cells are either alive or dead, and has been proposed to underlie
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 929



a variety of binary fate decisions such as maturation of Xenopus

oocytes (Ferrell and Machleder, 1998) and lactose utilization in

E. coli (Ozbudak et al., 2004). From the perspective of control,

many bistable systems have two valuable properties: (1) they

are insensitive to minor perturbations because the system is ‘‘at-

tracted’’ to the nearest stable state (in apoptosis, a bistable

system would be resistant to spontaneous activation of proa-

poptotic proteins, for example), and (2) they exhibit ‘‘all-or-

none’’ transitions from one stable state to another in response

to small changes in the level of a key regulatory input (a property

known in biochemistry as ‘‘ultrasensitivity’’). Bistable processes

often exhibit hysteresis (path dependence): once in the on state,

they do not readily slip back to off. It is often assumed that the

regulatory machinery for apoptosis must be bistable in the math-

ematical sense with one equilibrium state corresponding to cas-

pases off and ‘‘alive’’ and the other to caspases on and ‘‘dead’’

(Figure 3A). Although bistability remains the favorite framework

for thinking about the switch between life and death, bistability

is not strictly necessary for a switch-like transition between

two distinct states (Albeck et al., 2008b). A monostable system

in which the landscape changes through time can create

a temporal switch between two states; in this case, the change

in the landscape involves the creation, destruction, or transloca-

tion of precisely those proteins (caspases, cytochrome c, etc.)

that are known to regulate apoptosis. In this regard, it should

be noted that the ‘‘sharpness’’ of a switch in a conventional bi-

stable system refers to the steepness of the dose-response

curve (to a change in the concentration of a regulatory protein,

for example), not necessarily sharpness in time. In contrast,

the ‘‘all-or-nothing’’ switch observed by time-lapse microscopy

of cells undergoing apoptosis refers to a switch from alive to

dead that is sharp in a temporal sense. These considerations

do not imply that the biochemical pathways controlling

apoptosis are not bistable systems, but rather that bistability is

not necessary a priori.

Modeling and Measuring Receptor-Mediated Apoptosis
The first model of extrinsic apoptosis was published a decade

ago and set the stage for subsequent work in the field. Fusse-

negger et al. (2000) used emerging understanding of MOMP

and caspase activation by death receptors to assemble a simple

ODE model. By increasing or decreasing the levels of pairs of

proteins in the model, the authors determined which combina-

tions promoted or blocked effector caspase activation, thereby

providing insight into ratiometric control over cell death by cas-

pase-3 and XIAP (Fussenegger et al., 2000). At the same time,

the development of fluorescent reporters for MOMP and cas-

pase substrate cleavage allowed several groups to collect data

on the dynamics of apoptosis in single cells. These data showed

that following exposure to inducers of either intrinsic or extrinsic

apoptosis (UV light, actinomycin D, staurosporine, or TNF), cells

wait for several hours before initiating a rapid chain of events that

triggers MOMP and activates effector caspases (Goldstein et al.,

2000a, 2000b; Tyas et al., 2000). This contrasts with data ob-

tained by western blotting and other population-average

biochemical assays that suggested that MOMP and caspase

activation occur gradually over a period of several hours. The

two types of data can be reconciled by noting that apoptosis is
930 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
sudden and switch like in individual cells, but that it takes place

at different times in different cells (Figure 3B) (Goldstein et al.,

2000a; Goldstein et al., 2000b; Tyas et al., 2000).

All-or-None Control over Effector Caspase Activity

Goldstein et al. (2000b) used time-lapse imaging of cytochrome

c translocation to obtain the first data on the kinetics of MOMP.

They observed the time between proapoptotic insult and MOMP

to vary depending on the type and strength of the stimulus

(ranging from 4–20 hr following exposure to the pan-specific

kinase inhibitor staurosporine and 9–17 hr following exposure

to UV light), but the rate and extent of cytochrome c release

were constant, taking �5 min to reach completion. Further

understanding of the link between MOMP and caspase activa-

tion was made possible by the development of intramolecular

Förster resonance energy transfer (FRET) reporters for cas-

pase-mediated proteolysis. The first FRET reporters for moni-

toring caspase activity by time-lapse microscopy linked cyan

fluorescent protein (CFP) to yellow fluorescent protein (YFP)

using a polypeptide linker containing the amino acid sequence

DEVD, a substrate for caspase-3 (CFP-DEVD-YFP) (Rehm

et al., 2002; Tyas et al., 2000). Prior to reporter cleavage, CFP

lies in close proximity to YFP, causing FRET between the two

fluorescent proteins and reducing CFP emission. Following

cleavage of the DEVD-containing linker, the efficiency of FRET

drops dramatically, increasing the CFP to YFP fluorescence

ratio. Time-lapse imaging of cells expressing CFP-DEVD-YFP

revealed that caspase-3 is also activated rapidly, taking

<15 min to reach completion (Rehm et al., 2002; Tyas et al.,

2000).

Rehm et al. (2002) asked whether the cleavage kinetics of

effector caspase substrates depended on the identity or

strength of the apoptotic stimulus. Like Goldstein et al.

(2000b), Rehm and colleagues observed the delay between

exposure to a prodeath stimulus and the onset of effector cas-

pase activation to vary from cell to cell. They also noted that

the average delay varied with the dose and identity of the proa-

poptotic stimulus (3 ng/ml or 200 ng/ml TNF, 3 mMstaurosporine,

10 mM etoposide), but the kinetics of reporter cleavage did not.

The authors developed a quantitative description of these

data, showing that caspase activation in individual cells fits

a sigmoidal Boltzmann equation in which the lag time is dose

and stimulus dependent, but cleavage kinetics are dose invariant

(Figures 3C and 3D) (Rehm et al., 2002). Subsequent multiplex

imaging of MOMP and effector caspase reporters in single cells

showed that MOMP precedes effector caspase activation by

�10 min (Rehm et al., 2003). In electromechanical terminology,

the regulation ofMOMPand effector caspase activity constitutes

a variable delay, snap-action switch.

Intrigued by the idea that a switch is central to the regulation of

apoptosis, several groups have attempted to understand how

such a switch might arise, based on models in which bistability

is assumed as a design principle. Eissing et al. (2004) created

an 8-equation ODE model of apoptosis in a type I cell that

included activation of caspase-8, consequent cleavage and

activation of caspase-3, inhibition and degradation of activated

caspase-3 by XIAP, and activation of residual caspase-8 by acti-

vated caspase-3 in a feedback loop. The small size of the model

made it possible to identify stable states analytically, and the



authors found that adding a mechanism to inhibit active cas-

pase-8 (via the protein Bar) was necessary to ensure bistability

at the level of effector caspase activity (Eissing et al., 2004).

A subsequent modeling study that examined how cells would

resist spontaneous procaspase-8 activation argued against

a major role for Bar, however (Wurstle et al., 2010). Legewie

et al. (2006) created a 13-ODE model that described activation

of caspase-9 by Apaf-1, consequent activation of caspase-3,

and inhibition of caspases by XIAP. The authors identified an

‘‘implicit’’ or hidden positive feedback loop as a key contributor

to bistability; in this loop, caspase-3 promotes its own activation

by sequestering XIAP away from caspase-9, allowing caspase-9

to cleave additional procaspase-3 (Legewie et al., 2006). Bagci

et al. (2006) built models of varying complexity (the largest being

31 ODEs) centered on apoptosome formation and caspase-3

activation and concluded that cooperativity in the formation of

the apoptosomewas a key element for ensuring bistability (Bagci

et al., 2006). Chen et al. (2007) constructed both an ODE model

and a stochastic cellular automatonmodel to examine the poten-

tial for interactions among Bcl-2-family members to generate

bistability at MOMP. These models included activation of Bax

by an activator such as tBid, inhibition of the activator and Bax

by Bcl-2, and displacement of the activator in the activator-

Bcl-2 complex by Bax. This description of Bax and Bcl-2 also

encoded an implicit positive feedback loop in which freed acti-

vator could bind more Bax, leading to bistability in pore forma-

tion. Addition of cooperativity in Bax multimerization resulted in

a model encoding a one-way (as opposed to bidirectional or

hysteretic) switch (Chen et al., 2007). In a corroborating study

that used flow cytometry, an antibody against activated Bax

(clone 6A7) revealed a bimodal distribution in the staining of

HeLa cells treated with 400 nM staurosporine for 6 hr (Sun

et al., 2010). However, antibody staining is unreliable in dying/

dead cells, so proving the point will require showing bimodality

in Bax activation in cells that have not yet undergone effector

caspase activation. Most recently, Ho andHarrington (2010) built

a small ODE model in which FasL acts as a clustering agent for

Fas receptors. The reactions described spontaneous receptor

opening and closing, constitutive destabilization of open recep-

tors, and ligand-independent and -dependent stabilization of

receptor clusters. Analytical methods showed the system to

exhibit reversible bistability (hysteresis) at low receptor concen-

trations but irreversible bistability at higher local receptor densi-

ties (Ho and Harrington, 2010). In summary, this set of papers

reveals that almost every point in the apoptosis pathway has

the potential to generate bistability in the mathematical sense.

However, many of the papers were written in an era in which it

was not yet common for mathematical modeling to be combined

with quantitative experimentation in a single manuscript. The

results of simulation were compared to data from the literature,

but proposed regulatory mechanisms were not confirmed using

RNAi or other perturbation-based experiments.

Whereas the first generation of apoptosis models focused on

specific steps in the process of cell death (MOMP, apoptosome

formation, etc.), Albeck et al. (2008b) built a model that spanned

the entire pathway of extrinsic apoptosis from ligand binding to

cleavage of effector caspase substrates, albeit in simplified

form. Amodel comprising 58 differential equations was sufficient
to capture the essence of TRAIL-receptor binding, cleavage of

initiator and effector caspases, initiation of MOMP, release of

Smac and cytochrome c into the cytoplasm, and finally cas-

pase-3 activation and substrate cleavage. The model was

trained against experimental data that included live-cell micros-

copy, immunoblotting, and flow cytometry in wild-type HeLa

cells or cells perturbed by protein overexpression or RNAi-medi-

ated protein depletion. Model analysis and experiments

confirmed earlier evidence that MOMP is the point in receptor-

mediated apoptosis at which upstream signals are transformed

into an all-or-none snap-action signal (Goldstein et al., 2005,

2000b; Madesh et al., 2002; Rehm et al., 2003; von Ahsen

et al., 2000). To understand how this switchmight work inmolec-

ular terms, Albeck et al. (2008b) analyzed a series of models of

increasing complexity and biochemical realism that linked tBid

cleavage by initiator caspases to Smac/cytochrome c release.

The performance of each model was analyzed for its ability to

create a variable-delay, snap-action switch. A useful insight

was that the ‘‘rheostat model’’ (Korsmeyer et al., 1993), in which

it was postulated that MOMP is triggered when levels of active

Bax/Bak exceed those of Bcl-2/BclxL, only functioned in its

simplest form as a switch if Bax and Bcl-2 were assumed to

associate irreversibly at a rate faster than diffusion. In contrast,

snap-action switching emerged naturally from the biochemistry

of Bax and Bcl-2 if more complex reaction topologies were

assumed; these included slow activation of Bax by tBid, parti-

tioning of reactants into cytosolic and mitochondrial compart-

ments, and a requirement for Bax multimerization. Rapid and

complete translocation of Smac and cytochrome c was ensured

in part by the favorable kinetics of moving proteins down a steep

concentration gradient from the mitochondrion (where they are

abundant) to the cytosol (where they are initially absent). Despite

the apparent success of the Albeck et al. (2008b) model, it is

important to realize that it involves a simple picture of DISC

formation as well as a simplified version of MOMP that lacks

the multiplicity of positive- and negative-acting Bcl-2-family

members present in real cells.

Inhibition of Effector Caspases during

the Pre-MOMP Delay

Better understanding of caspase substrate specificity (Luo et al.,

2003; Stennicke et al., 2000; Thornberry et al., 1997) along with

a direct comparison of CFP-DEVD-YFP cleavage kinetics with

those of endogenous substrates (Albeck et al., 2008a) made

clear that the CFP-DEVD-YFP biosensor is processed by both

effector and initiator caspases. Changing the biosensor linker

to DEVDR made it 20-fold more selective for caspase-3 relative

to caspase-8 (Albeck et al., 2008a), and changing the cleavage

recognition site to IETD resulted in a FRET reporter selective

for initiator caspases (Luo et al., 2003). Combining this selective

effector caspase reporter with a MOMP reporter showed that

effector caspase activity is negligible during the pre-MOMP

delay (Albeck et al., 2008a); this had correctly been assumed

to be true by Rehm et al. (2002), despite the use of a less specific

CFP-DEVD-YFP reporter. In contrast, initiator caspases are

active throughout the pre-MOMP delay (Albeck et al., 2008a;

Hellwig et al., 2008), and their substrates Bid and procaspase-

3 accumulate in cleaved form. Caspase-3 is a very potent

enzyme, and model-based simulation and experiments suggest
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Figure 3. Using Models to Understand Data
(A) Energy landscape showing frameworks for
achieving two distinct states. Left: A bistable
system has two stable steady states for all time
(once equilibrium is reached), corresponding to
alive and dead. Right: A monostable system starts
with a single stable ‘‘alive’’ state; once the model
starts to evolve, the landscapemorphs as proteins
are created and destroyed, producing a single
stable ‘‘dead’’ state at late times. Making the
transition unidirectional requires processes such
as a threshold.
(B) Top: Immunoblot analysis of PARP cleavage in
HeLa cells treated with 10 ng/ml TRAIL in the
presence of cycloheximide; PARP is an effector
caspase substrate. Bottom: Simulation of the time
course of effector caspase (EC) substrate
cleavage in individual cells (blue lines), overlaid
with an average (pink line) that depicts the fraction
of cells in which caspases have been activated;
this average mimics the data obtained by immu-
noblotting.
(C) Idealized single-cell time course for effector
caspase substrate cleavage. The dynamics have
the form of a sigmoidal Boltzmann equation in
which c(t) is the amount of substrate cleaved at
time t, f is the fraction cleaved at the end of the
reaction, Td is the delay period between TRAIL
addition and half-maximal substrate cleavage,
and Ts is the switching time between initial and
complete effector caspase substrate cleavage
(the reciprocal of the slope at t = Td).
(D) Effector caspase substrate cleavage in indi-
vidual HeLa D98 cells expressing myc-CFP-
DEVD-YFP in response to the indicated doses of
TNF. Data from each cell have been fit with the
sigmoidal Boltzmann function.
(E) Simulation showing effector caspase substrate
cleavage as a function of XIAP concentration. At
high concentrations, effector caspase substrate
cleavage is blocked; at low concentrations,
effector caspases are activated rapidly; and
at concentrations of XIAP between 0.15 and
0.30 mM, effector caspase substrate cleavage
proceeds slowly and only reaches submaximal
levels.
(F) A simulation showing how the initial concen-
trations of procaspase-8 and cFLIPL determine

whether NF-kB is activated, effector caspases are activated, or both after Fas stimulation. The white circle indicates the estimated level of procaspase-8 and
cFLIPL in HeLa-CD95 cells.
(A) and (C) were adapted from Albeck et al. (2008b); (D) was adapted with permission from Rehm et al. (2002), J. Biol. Chem. 277, 24506–24514, copyright 2002
The American Society for Biochemistry and Molecular Biology. All rights reserved; (E) was adapted from Rehm et al. (2006) by permission from Macmillan
Publishers Ltd: EMBO J. 25, 4338–4349, copyright 2006. (F) was adapted from Neumann et al. (2010) by permission from Macmillan Publishers Ltd: Mol. Syst.
Biol. 6, 352, copyright 2010.
that �400 active molecules are sufficient to cleave 106–107

molecules of cellular substrate within several hours (Albeck

et al., 2008a). However, during the pre-MOMP delay, no pro-

cessing of effector caspase substrates can be detected using

live-cell FRET reporters or flow cytometry (c.f. Figures 2A and

2B). This raises the interesting question: How are effector cas-

pases maintained in an off state despite being continually pro-

cessed by initiator caspases from a zymogen into a cleaved

and potentially active form?

One mechanism for keeping processed effector caspases

‘‘off’’ is binding of XIAP to the catalytic cleft of caspase-3. This

tight interaction (�1 nM) might seem sufficient to hold caspase-

3 in check, but modeling shows that a >100-fold molar excess

of XIAP over caspase-3 would be required to ensure effective
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inhibition of caspase-3 proteolytic activity over the course of

a typical 2–6 hr pre-MOMP delay. The requirement for such

a large excess of XIAP over caspase-3 arises because competi-

tive inhibition is reversible whereas substrate cleavage is not and

because substrates, which are abundant, are in competition with

XIAP for access to the caspase catalytic site. As XIAP and cas-

pase-3 are present at roughly equal concentrations in HeLa cells,

simple competitive inhibition cannot be the sole inhibitory mech-

anism. XIAP is an E3 ligase able to promote ubiquitination and

degradation of caspase-3, and simulation suggests that a combi-

nation of competitive inhibition and caspase degradation would

constitute an effective means of regulation (Albeck et al., 2008a).

Confirming these predictions, depletion of XIAP by RNAi or phar-

macological inhibition of the proteasome was observed to cause



effector caspase activation prior to MOMP (Albeck et al., 2008a).

Deletion of XIAP in the mouse or truncation of the ubiquitination-

promotingRINGdomain also caused elevated caspase-3 activity

and sensitivity to apoptosis (Schile et al., 2008), demonstrating

a critical role for XIAP-mediated ubiquitination of caspase-3

in vivo. The pre-MOMP delay evidently constitutes a ‘‘latent’’

death state inwhich effector procaspases are actively processed

by initiators but are held in check by XIAP until Smac is released

during MOMP. The reasoning that led to this conclusion illus-

trates the value of making models explicit and analyzing them

computationally: a biochemical mechanism that seems

adequate on its face (Bcl-2-Bax binding in the rheostat model

or competitive inhibition of C3 by XIAP during the pre-MOMP

delay) proves insufficient when actual protein levels and rates

of reaction are taken into account. In this sense, quantitative anal-

ysis can fundamentally change our qualitative understanding of

a regulatory mechanism. It should be noted, however, that

current models of receptor-mediated apoptosis in type II cells

cannot completely restrain pre-MOMP caspase-3 activity when

experimentally measured procaspase-3 and XIAP concentra-

tions are used. Although XIAP-mediated degradation of active

caspase-3 is necessary, raising this degradation rate too much

compromises the switch-like activation of effector caspase

substrate cleavage post-MOMP. Reconciliation of all experi-

mental observations awaits the development of more sophisti-

cated and complete models.

If XIAP is partially depleted by RNAi and MOMP is blocked by

overexpression of Bcl-2, a sublethal level of effector caspase

activity is generated and effector caspase substrates are only

partially processed; moreover incomplete cleavage of cas-

pase-3 substrates does not necessarily cause cell death (at least

in HeLa cells) (Albeck et al., 2008a). Modeling and experiments

with XIAP overexpression suggest three possible outcomes de-

pending on XIAP levels: with [XIAP] < 0.15 mM, effector caspase

substrate cleavage is complete; at [XIAP] > 0.30 mM, cleavage is

fully inhibited; and at intermediate XIAP concentrations, slow

submaximal effector caspase substrate cleavage occurs

(Figure 3E) (Rehm et al., 2006). Thus, alteration of XIAP levels

disrupts normal switch-like control over effector caspase activa-

tion and interferes with the normal link between caspase activa-

tion and cell killing. Activation of CAD in the absence of cell death

is expected to be particularly problematic since it has the poten-

tial to cause genomic instability (Lovric and Hawkins, 2010) and

has been proposed to be the trigger of the chromosomal trans-

locations observed in some leukemias (Betti et al., 2005;

Vaughan et al., 2002, 2005; Villalobos et al., 2006).

The role of XIAP in restraining caspase-3 in the absence of

MOMP makes it a central factor in controlling type I versus

type II apoptosis. Jost et al. (2009) observed that inhibition of

XIAP function by gene targeting or a Smac mimetic drug caused

type II cells to adopt a type I phenotype. Bid deficiency protected

hepatocytes and pancreatic b cells from FasL-induced

apoptosis (fulfilling the definition of mitochondria-dependent

type II death), but concomitant loss of XIAP (in Bid�/� XIAP�/�

mice) restored FasL sensitivity, thereby demonstrating a switch

to type I behavior (Jost et al., 2009). Type I cells are defined as

not requiring MOMP for apoptosis, but blockade of the mito-

chondrial pathway via Bid depletion or Bcl-2 overexpression in
type I cells has been observed to reduce effector caspase

activity and to increase the number of cells surviving TRAIL

exposure (Maas et al., 2010). Both type I and type II pathways,

therefore, appear to depend to a greater or lesser extent on

the mitochondrial pathway, either for regulating XIAP and acti-

vating effector caspases or for killing cells by disrupting essential

mitochondrial functions.

Determinants of the Timing and Probability of MOMP

Apoptosis proceeds at different rates in different cells, even

among members of a clonal population. Some cells die within

45 min of exposure to FasL or TRAIL, whereas other cells in

the same dish wait 12 hr or more. A simple way to conceptualize

control over the timing of apoptosis in single cells is that the level

of active receptor determines the amount of active caspase-8/

10, which sets the rate of tBid cleavage and, thus, the rate of

approach to a threshold that must be overcome for MOMP to

occur (Figure 2C). The height of this threshold is set by the rela-

tive levels of competing pro- and antiapoptotic Bcl-2-family

proteins (Chipuk and Green, 2008). We discuss below recent

advances in our understanding of the MOMP threshold and re-

turn later to the determinants of the rate of approach to the

threshold. Using fluorescent measurements in a purified in vitro

system, Lovell et al. (2008) simultaneously measured the rates

of three reactions leading to pore formation and determined

the following order of events. First tBid binds rapidly to mito-

chondrial membranes where tBid and Bax interact, promoting

insertion of Bax into the membrane, a rate-limiting step. Bax

then oligomerizes to form pores, and membranes become

permeable. In vitro, Bax oligomerization continues even after

membranes are permeabilized (Lovell et al., 2008). In cell culture,

Bax multimerization is first detected immediately prior to MOMP

and then continues for at least 30 min, ultimately generating

many more Bax puncta or pores than the number required for

MOMP (Albeck et al., 2008b; Dussmann et al., 2010). Formation

of the first observable Bax (or Bak) puncta correlates temporally

and spatially with the first subset of mitochondria to undergo

MOMP. Pore formation and MOMP then spread through the

cell as a wave with a velocity of �0.6 mm/s, a process that has

been modeled using a PDE network (Rehm et al., 2009). The

process of pore formation proceedsmore rapidly at higher doses

of TRAIL, presumably due to an increased rate of procaspase-8

activation (Rehm et al., 2009). However, it has recently been

observed that in a subset of HeLa cells, MCF-7 cells, and murine

embryonic fibroblasts, some mitochondria fail to undergo

MOMP in response to diverse proapoptotic stimuli (actinomycin

D, UV, staurosporine, or TNF). The subset of mitochondria that

remain intact fail to accumulate GFP-Bax puncta but undergo

complete MOMP when treated with the Bcl-2 antagonist and

investigational therapeutic ABT-737, suggesting that resistance

of mitochondria to MOMP lies at the point of Bax/Bak activation

(Tait et al., 2010). These findings suggest that mitochondria in

a single cell differ from each other with respect to their sensitiv-

ities to proapoptotic stimuli and that MOMPmight not always be

an all-or-none event at the single-cell level (Tait et al., 2010).

Time-lapse imaging of initiator caspase and MOMP reporters

shows that the height of the MOMP threshold varies from cell to

cell. MOMP is triggered following cleavage of�10%of a reporter

carrying one IETD recognition site (Hellwig et al., 2008, 2010) or
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 933



30%–60% of a reporter carrying two recognition sites (Albeck

et al., 2008a, 2008b; Spencer et al., 2009). Variation in the height

of the MOMP threshold from cell to cell (presumably arising from

variation in the levels of Bcl-2-family proteins, see below) can

most easily be resolved using the sensitized dual-IETD reporter

(Figure 2C) and contributes �20% of the total variability in the

time of death among HeLa cells in clonal population exposed

to 10 ng/ml TRAIL (Spencer et al., 2009). The remaining 80%

of the variability appears to reflect differences in the rate of Bid

cleavage, although these percentages are expected to change

with stimulus and cell type. However, the precise dynamics of

Bid cleavage have recently been thrown into some doubt:

a FRET reporter containing full-length Bid rather than an artificial

IETD caspase recognition site exhibits minimal cleavage prior to

MOMP (Hellwig et al., 2010). One explanation for this discrep-

ancy is that IETD-only reporters might be overly sensitive and

not reflect the kinetics of endogenous substrate cleavage. In

this view, cleavage of Bid by initiator caspases is subject to addi-

tional forms of regulation so that tBid does not accumulate until

just before MOMP (Hellwig et al., 2010). Conversely, the Bid-

containing FRET reporter might simply be insufficiently sensitive,

and levels of tBid required for MOMP (estimated to be <3% of

the total Bid pool) might be below the level of detection. In this

view, IETD-only reporters conveniently amplify a signal that

would otherwise be undetectable. Resolving this question will

require careful comparison of reporter constructs with endoge-

nous proteins, which will itself depend on the availability of anti-

bodies that can distinguish different caspase-8 substrates. It

seems likely that carefully calibrated models will also help with

data integration.

The rate at which initiator caspase substrates are cleaved

varies from cell to cell (Figure 2C). The current view is that the

strength of receptor signaling and the amount of active DISC

control the rate of initiator caspase substrate cleavage and

thus the rate of approach to the MOMP threshold, with lower

levels of prodeath stimulus leading to slower Bid cleavage and

slower onset of apoptosis. Models of DISC formation in FasL-

treated cells have questioned whether apoptosis simply slows

down with decreasing ligand concentrations (a continuous

decrease), or whether there is a minimum ligand:receptor ratio

needed for induction of apoptosis (a threshold; Bentele et al.,

2004). Modeling predicted that below a critical ligand:receptor

ratio of 1:100, apoptosis is completely blocked due to the

presence of the inhibitory DISC component c-FLIP. Above the

critical threshold, c-FLIP is insufficient to block all DISC activity

prior to the formation of active caspase-8. A follow-up study

refined this view by showing that active DISC is formed

at concentrations of a receptor crosslinking antibody (anti-

APO-1, which activates Fas receptors) below a critical threshold.

However, because c-FLIP has a higher affinity than procaspase-

8 to the few DISCs that are formed, activation of caspase-8 is

effectively inhibited (Lavrik et al., 2007). Continuing this line of

reasoning, Fricker et al. (2010) used modeling, biochemical

assays, and live-cell imaging to explore how levels of c-FLIP iso-

forms determine sensitivity to Fas signaling. Although c-FLIPS/R

is well established as an inhibitor of Fas-mediated apoptosis,

the role of c-FLIPL has been controversial because it plays both

pro- and antiapoptotic roles depending on expression level.
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Model analysis suggested that the effects of c-FLIPL on activa-

tion of procaspase-8 varywith FasL levels: relative to cells having

endogenous levels of c-FLIPL, 20-fold overexpression of c-FLIPL

blocks cell death when FasL levels are low but accelerates death

when FasL levels are high. However, even at high FasL levels,

a further increase in c-FLIPL concentration inhibits procaspase-

8 processing and decreases the extent of cell death. Models

can be quite helpful in exploring these sorts of quantitative rela-

tionships. One explanation supported bymodel analysis involves

the fact that c-FLIPL has higher affinity for DISCs than procas-

pase-8 but that procaspase-8 is present in cells in substantial

molar excess. At low FasL levels, few DISCs are formed, relative

affinities dominate, and the ratio of c-FLIPL to caspase-8 at

DISCs is high. At high levels of FasL, many DISCs are formed,

and the small number of c-FLIPL molecules (�300 per HeLa

cell) is exhausted, allowing DISC-bound procaspase-8 to over-

whelm c-FLIPL. Thus, subtle changes in the levels of c-FLIPL

and FasL can change the timing and probability of death in

nonlinear ways that can be understood only if the concentrations

of interacting proteins are taken into account (Fricker et al., 2010).

An additional factor affecting the life-or-death fate of a cell

exposed to death ligand is the interplay between prosurvival

and proapoptotic pathways. The relative strength of these

competing regulatory processes is also thought to be

controlled by the composition of the DISC. Induced survival

signaling has been largely attributed to NF-kB, and many nega-

tive regulators of apoptosis are known to be induced by NF-kB,

including c-FLIP, BclxL, and members of the IAP family

(Gonzalvez and Ashkenazi, 2010). It is not yet clear which of

these factors is most important nor whether NF-kB-indepen-

dent processes, such as MAPK signaling, also play important

prosurvival functions. Whereas Bentele et al. (2004) and Fricker

et al. (2010) focused on the presence or absence of prodeath

signaling at the DISC, Lavrik et al. (2007) and Neumann et al.

(2010) explicitly focused on the balance between prodeath

versus prosurvival activities. Lavrik et al. (2007) demonstrated

that Erk kinase is activated in response to anti-APO-1 over

a wide range of doses, even in the presence of a pan-caspase

inhibitor. This work showed that survival signaling occurred in

parallel with death signaling, but it was not clear how the

survival signal was initiated. Neumann et al. (2010) built and

tested an ODE model of Fas-mediated apoptosis with a postu-

lated link between apoptosis and survival pathways in which

c-FLIPL is cleaved by caspase-8 into p43-FLIP, which binds

and activates IkB kinase (IKK). IKK then phosphorylates and

inhibits IkB, a negative regulator of NF-kB, leading to induction

of NF-kB-mediated transcription. Simulation and experiments

suggested that both proapoptotic (caspase-8 dependent) and

prosurvival (NF-kB-dependent) pathways are activated in

parallel and that a subtle balance between c-FLIPL and initiator

caspase levels determines which one predominates. By visual-

izing the levels of c-FLIPL and procaspase-8 on a parameter

landscape (Figure 3F), the authors showed that c-FLIPL can

disable, promote, or inhibit NF-kB activation depending on

whether the level of c-FLIPL is low, intermediate, or high. This

effect arises because high levels of c-FLIPL prevent caspase-

8-mediated processing of c-FLIPL into the IKK-binding p43-

FLIP form (Neumann et al., 2010).



Future work on the topic of induced survival signaling would

benefit from single-cell measurements combining reporters for

NF-kB target gene expression (Nelson et al., 2004) and reporters

of initiator caspase activity so as to capture feedback. Both the

apoptosis and the NF-kB fields have a tradition of utilizing live-

cell imaging and mathematical modeling (e.g., Ashall et al.,

2009; Hoffmann et al., 2002; Lee et al., 2009), and it would be

valuable to combine models of both processes. This would

lead to better understanding of competing prosurvival and pro-

death death processes in different cell types.

Cell-to-Cell Variation in the Timing of Apoptosis

Individual cells differ widely in their responses to apoptotic

stimuli (Figure 2D). Potential sources of cell-to-cell variability in

the timing and probability of apoptosis include genetic or epige-

netic differences, differences in cell-cycle phase, stochastic fluc-

tuations in biochemical reactions, and natural variation in protein

concentrations. To distinguish among these possibilities, three

independent groups followed dividing cells using time-lapse

microscopy and compared the timing and probability of

apoptosis in sister cells and in randomly selected pairs of cells

(Bhola and Simon, 2009; Rehm et al., 2009; Spencer et al.,

2009). At a dose of TRAIL sufficient to induce apoptosis in half

of the cells, the probability of death was observed to be highly

correlated between sisters, as was the time at which cells died.

Correlation in death time among sister cells has been observed

in a variety of cell types (HeLa, MCF-10A, NIH 3T3, HT1080,

andmurine embryonic fibroblasts) following exposure to a variety

of apoptosis-inducing agents (TRAIL, TNF-a, staurosporine, and

etoposide). In contrast, randomly selected cells were found to be

uncorrelated, and no obvious correlation with cell-cycle phase or

with position in the dish could be detected (Bhola and Simon,

2009; Spencer et al., 2009), although the way in which these

experiments were performed does not rule out some contribu-

tion from cell-cycle state (Rehm et al., 2009). Importantly, the

degree of similarity between sisters fell as the time since cell divi-

sion increased so that within one to two generations, sisters were

no more correlated than randomly chosen pairs of cells. This

transient heritability in timing of death argues against a genetic

or epigenetic explanation for cell-to-cell variability in apoptosis,

as genetic and epigenetic differences tend to be stable over

much longer timescales. The initial correlation between sister

cells also rules out a significant role for stochasticity in the reac-

tions that regulate caspase activation, a conclusion supported

by simulation (Eissing et al., 2005). Transient heritability in the

timing and probability of death data are most consistent with

an explanation rooted in natural cell-to-cell variation in the levels

or activities of proteins among genetically identical cells. Sister

cells are known to inherit similar levels of relatively abundant

biomolecules during cytokinesis, but levels then diverge due to

random fluctuations in protein synthesis and degradation (Sigal

et al., 2006). In support of this, experiments with cycloheximide

show that the rate of sister cell decorrelation is highly sensitive

to the rate of protein synthesis (Spencer et al., 2009).

Over the last decade, modeling and experimentation in

bacteria, yeast, and more recently in mammalian cells, have

provided a mechanistic framework for understanding stochastic

variation (‘‘noise’’) in rates of transcription and translation (Raj

and van Oudenaarden, 2008). The number of transcriptional initi-
ation complexes on any single gene is small (potentially as small

as 1–2), and the probability that a transcript will be created in any

time interval is therefore highly stochastic. Fluctuations in mRNA

levels result in fluctuating rates of protein synthesis. With short-

lived or low-copy-number proteins, this can cause large fluctua-

tions in protein levels, whereas with relatively abundant proteins,

such as those controlling apoptosis, the most significant effect is

that different cells contain different concentrations of each

protein, and thus unique proteomes. Current models predict

that the distribution of concentrations across a population of

cells should be long-tailed, following a log-normal or gamma

distribution (Friedman et al., 2006; Krishna et al., 2005). In the

case of proteins controlling apoptosis, flow cytometry reveals

a nearly log-normal distribution with a coefficient of variation

(CV; a unit-less measure of variability equal to the standard devi-

ation divided by themean) ranging from 0.2 to 0.3 (Spencer et al.,

2009). Such a spread results in cells in the top 5th percentile

having >2.53 higher protein expression compared to cells in

the bottom 5th percentile (Niepel et al., 2009). The question

then arises of whether such modest variation in protein levels

is sufficient to explain the observed variation in the timing of

cell death. Model-based simulation suggested that it is: when

the distribution of cell death times was computed for TRAIL-

induced apoptosis assuming log-normally distributed protein

concentrations, a close match was observed between the vari-

ability in simulation and experiment (Spencer et al., 2009). In

the absence of any simple experimental test, the match between

simulation and measurement increases our confidence in the

hypothesis that natural variation in the levels of apoptotic regula-

tors is responsible for variability in the time and probability of cell

death.

Is it possible to establish a direct link between the levels of any

single protein and the probability and timing of apoptosis? In

principle such a measurement could be made by fluorescently

tagging proteins of interest at the endogenous locus and then

relating their levels to time of death using live-cell microscopy.

However, mathematical modeling suggests that achieving

reasonable predictability over cell fate would require single-cell

measurement of many protein levels (as well as some posttrans-

lational modifications), a difficult task. Alternatively, simulation

suggests that predictability can be achieved by measuring the

rates of critical reactions, such as the processing of caspase-8

substrates. Because this rate depends on the levels of multiple

upstream proteins, measuring it is much more informative than

simply knowing protein levels (Spencer et al., 2009). This conclu-

sion implies a fundamental limit to our ability to predict cell fate

based on single-cell proteomics.

Conclusions and Future Prospects
Key goals for a combined model- and experiment-driven anal-

ysis of apoptosis are to understand how multiple cooperating

and competing signals are integrated to effectively execute

a binary death-survival decision, to determine why some

processes and proteins are important in one cell type and not

in another, and to predict the responses of cells to death ligands

and chemotherapy drugs. A review of the literature thus far

suggests that these goals remain largely unfulfilled. Skeptics

will argue that quantitative analysis can only add details to
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existing conceptual frameworks or that mathematical models

are too theoretical and too dependent on assumptions to be

useful (although drawing a pathway diagram may involve just

as many assumptions). A more generous and realistic assess-

ment would be that mechanistic modeling of apoptosis has

had an impact in motivating the collection and analysis of quan-

titative single-cell data, critically evaluating potential regulatory

mechanisms, and investigating the origins of cell-to-cell vari-

ability.

Technical Challenges

Addressing the long-term goals of quantitative, model-driven

biology will require major conceptual and technical advances.

Most computational tools currently in use have been adapted

from other fields, but understanding a biological system is

nothing like fixing a radio. Cells are not well-mixed systems as

encountered in chemistry, nor are they easily understood in

terms of fundamental physical laws or obviously subject to the

design principles (such as modularity) encountered in engi-

neered systems. They resemble all of these to some extent,

but systems biology is currently immersed in the uncharted

process of working out which concepts from chemistry, physics,

and engineering are most useful in understanding cells and

tissues.

It is already evident that different research groups will

continue to build models differing in scope and level of detail

and customized to the biological questions being addressed.

Current approaches to model building typically involve de

novo creation of complex sets of equations in each paper.

A lack of transparency in the underlying assumptions makes it

difficult for practitioners, nevermind the general research

community, to understand how models differ from each other.

Fortunately, ‘‘rules-based’’ modeling methods now in develop-

ment promise to address the issue of model reusability and intel-

ligibility (Faeder et al., 2009; Hlavacek et al., 2006). More

rigorous means for linking models to experimental data and for

understanding which aspects of a model are supported by

data are required. Progress in this area is slow, but the basic

principles are understood in the context of engineering and

the physical sciences (Jaqaman and Danuser, 2006). Finally,

we must work to ensure basic familiarity with dynamical systems

among trainees. It is widely accepted that a working knowledge

of statistical methods such as clustering and regression is

essential in contemporary biomedicine, but it is unfortunate

that few students are taught that familiar Michaelis-Menten

equations are simply approximations to a mass-action

formalism written as networks of ODEs (Chen et al., 2010).

Biological Challenges

Cancer pharmacology is the area of translational medicine in

which models of apoptosis are most obviously of value. Critical

questions in the development of rational and personalized treat-

ment of cancer involve understanding precisely how anticancer

drugs induce apoptosis, why the extent of cell killing varies so

dramatically from one tumor to the next, and how we can predict

response to chemotherapy, both ‘‘targeted’’ and cytotoxic.

As yet no quantitative, model-based studies of these issues

have been reported, but it seems almost certain that sensitivity

and resistance will be controlled in a multifactorial manner.

Genes and proteins that are important in one cellular setting
936 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
will not be significant in another. In the case of TRAIL, for

example, conventional molecular approaches have implicated

the levels of O-glycosylation enzymes (GALNT3, GALNT14;

(Wagner et al., 2007), TRAIL decoy receptors (DcR1, DcR2,

and osteoprotegerin), c-FLIP, BclxL, and inhibitor of apoptosis

proteins (IAPs) in TRAIL resistance in different cell lines (reviewed

in Zhang and Fang, 2005). It is likely that all of these explanations

are correct to some degree, and the key task therefore becomes

understanding the role of context. This is precisely wheremodels

hold great promise, as they are able to quantify and weigh the

contributions of multiple factors. Such context sensitivity could

be implemented by using a model in which the topology and

rate constants remain the same for all cell types but protein

concentrations (initial conditions) are altered to match experi-

mentally measured protein levels.

Ultimately, we need to understand the regulation of apoptosis

in the context of real human tissues and tumors. Because mech-

anistic modeling is dependent on quantitative, multiplex data,

this will not be straightforward, even in model organisms. New

in vivo caspase activity probes (Edgington et al., 2009) and

high-resolution intravital microscopy (Condeelis andWeissleder,

2010) will play an important role in data acquisition in vivo, but it

also seems probable that the development of mechanistic

models able to store, simulate, and rationalize results obtained

across a panel of cancer cell lines will be essential. Such

context-sensitive modeling might uncover a multifactorial

measurement that could be made on real human tumors.

Expression profiling and cancer genome sequencing also aspire

to personalize cancer therapy, but the framework we envision is

complementary in focusing on biochemical mechanism. A multi-

plex measurement method (BH3 profiling) already exists to

estimate the propensity of cells to undergo apoptosis; it involves

permeabilizing cells and then monitoring their responses to

diverse BH3-only peptides (Deng et al., 2007). BH3 profiling

can predict sensitivity to conventional chemotherapies and to

the Bcl-2/BclxL antagonist ABT-737 (Deng et al., 2007). It would

be valuable to construct a predictive mathematical framework

for BH3 profiling and thereby generate precise mechanistic

understanding of drug sensitivity and resistance that could be

translated clinically.

Single-cell analysis of cellular responses to FasL and TRAIL

has highlighted the dramatic impact of cell-to-cell variability in

determining the timing and probability of response. That cells

surviving exposure to a death ligand or cytotoxic drug can

resume normal proliferation is a testament to the ‘‘stiff trigger,’’

‘‘all-or-nothing’’ nature of the apoptotic switch. Cells that cross

the threshold for MOMP are normally fully committed to die,

whereas cells that remain below it can recover and continue to

proliferate. In the case of receptor-mediated apoptosis, the

presence of a dose-dependent variable delay preceding

MOMP followed by a dose-independent and nearly invariant

post-MOMP period likely reflects the evolutionary advantages

of such a system. Variability in the timing and probability of

apoptosis makes it possible for a uniform population of cells to

respond to a prodeath stimulus in a gradedmanner, even though

the response is binary at the single-cell level. In contrast, by

undergoing MOMP and effector caspase activation in a rapid

and invariant way, cells avoid the highly deleterious effects of



initiating but not completing apoptosis; these effects include

formation of ‘‘undead’’ cells with damaged genomes.

Variability in response appears to be universal across diverse

cell lines and proapoptotic stimuli (Cohen et al., 2008; Gascoigne

and Taylor, 2008; Geva-Zatorsky et al., 2006; Orth et al., 2008;

Sharma et al., 2010; Spencer et al., 2009; Huang et al., 2010).

For example, Gascoigne and Taylor (2008) characterized the

response of 15 cell lines to three different classes of antimitotic

drugs and found significant inter- and intra-cell line variation,

with cells exhibiting multiple distinct phenotypes in response to

the same treatment. Cohen et al. (2008) correlated variability in

the levels of two proteins with the life-or-death response to the

cancer drug camptothecin. Most recently, Sharma et al. (2010)

detected a small subpopulation of reversibly ‘‘drug-tolerant’’

cells following treatment with cisplatin or the epidermal growth

factor receptor inhibitor erlotinib. The significance of these find-

ings is that cancer therapy is beset by the problem of fractional,

or incomplete, killing of tumor cells. Multiple explanations have

been proposed for fractional killing, including drug insensitivity

during certain phases of the cell cycle, genetic heterogeneity,

incomplete access of tumor to drug (Chabner and Longo,

2006; Skeel, 2003), and the existence of drug-resistant cancer

stem cells (Reya et al., 2001). Single-cell imaging and computa-

tional modeling of apoptosis have added to this list cell-to-cell

variability in protein levels arising from stochasticity in protein

expression (Spencer et al., 2009). A critical task for the future

will be to ascertain the relative importance of these processes

in determining the extent of fractional killing with real tumors

and therapeutic protocols. Because a wide variety of biochem-

ical processes are involved, all operating on different timescales,

developing an appropriate quantitative framework will be a key

step to better understanding.
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